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Abstract

The Perona-Malik differential equation (PMDE) is an important model in image processing. In 
this paper, we present a numerical scheme for the fractional form of anisotropic nonlinear 
PMDE with initial-boundary conditions. The stability and convergence of this scheme is 
verified. Finally, some numerical experiments are given for denoising, enhancing and blurring 
the images. 
Keywords: Fractional system, Perona-Malik equation, convergence, stability, image 
processing 

 
1. Introduction 

The history of fractional calculus began in 1695 by 
Leibniz. At present, the fractional calculations are 
used for many applications especially in the 
processing of digital images and signals (see [22]-
[25] and [34]). In 1997, Dobson et al. analyzed the 
convergence of an iterative method for problems 
such as total variation denoising [10]. In 1999, 
Kornprobst et al. [15] proposed a suitable numerical 
scheme based on half quadratic minimization for the 
problem of restoring and motion segmenting noisy 
image sequences with a static background, and they 
demonstrated its convergence and stability. In 2011 
in the conference of Germany, Mastroianni et al. 
demonstrated the image processing method to 
investigate performance and stability [6]. In 2011, 
Liu et al.[18] proposed two new implicit numerical 
methods for the fractional cable equation. 
Moreover, they investigated the stability and 
convergence of these methods. In total variation 
denoising, one attempts to remove noise from a 
signal or image by solving a nonlinear minimization 
problem involving a total variation criterion. Several 
approaches based on this idea have 
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recently been shown to be very effective, particularly 
for denoising functions with discontinuities. In image 
processing, fractional calculus is exploited in image 
denoising using the diffusion equation [1,7,28,31]. 
Enhancing contrast and preserving edges are 
fundamental operations in noise reduction. 
However, at one time, providing enhanced contrast 
and noise reduction is difficult. Chen et al. proposed 
two novel models for simultaneous image denoising 
and contrast enhancement using Partial Difference 
Equation (PDE) variational approach [9]. Models 
based on PDEs and calculus of variations are also 
generalized for fractional derivatives. For instance, 
fractional-order PDEs are applicable for multi-scale 
nonlocal contrast enhancement with texture 
preserving [26] and iterative learning control with 
high-order internal models [19]. We aim to present a 
numerical scheme for the fractional form of Perona-
Malik formulation. Also, we investigate the stability 
and convergence of this numerical scheme and apply 
it for denoising, enhancing and blurring the images 

 
2. Perona-Malik Formulation 
Although the conventional image denoising 
approaches such as averaging filter or Gaussian filter 
are efficient in the reduction of noise, they also have 
the disadvantage of blurring the edges of images 
[4],[5]. For this sake, some techniques based on PDE 
anisotropic diffusion have been developed to reduce 
image noise without removing significant parts of 
the image content, typically edges, lines or other 
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important details [2],[11]. Anisotropy in diffusion 
means that the smoothing induced by the PDE can 
be favored in some directions and prevented in 
others.  
Anisotropic diffusion was first proposed by Perona 
and Malik [21] to image filtering as follows:  
 

{

𝜕𝐼(𝑥,𝑦;𝑡)

𝜕𝑡
= 𝑑𝑖𝑣(𝑑(𝑥, 𝑦)∇𝐼(𝑥, 𝑦; 𝑡))),

𝐼(𝑥, 𝑦; 0) = 𝐼0.
  (1) 
 where 𝐼0  is the unfiltered image, and after some 
diffusion time 𝑡, 𝐼(𝑥, 𝑦; 𝑡) will be the filtered image. 
Also, the function 𝑑(𝑥, 𝑦)  is called diffusion 
coefficient that controls the diffusion rate at any 
location of an image domain. If 𝑑 is a constant value, 
(1) will be equivalent to convolving the image with a 
Gaussian smoothing filter (isotropic diffusion) that 
blurs whole of the image. The idea of anisotropic 
diffusion is to adaptively choose 𝑑 so that an image 
becomes smooth whose edges are preserved. The 
diffusion coefficient 𝑑 is generally selected to be a 
nonnegative monotonically decreasing function of 
gradient magnitude. Nonlinear diffusivity 𝑑 = 𝑔(𝐼) 
is a function reducing as the gradient grows. The 
stronger the edge, the smaller 𝑔 and the smoother 
the region, the larger 𝑔. 
For instances, 𝑔 can be given by  

𝑔(𝐼) =
1

√1 + 𝑐|∇𝐺𝛾 ∗ 𝐼|
, 

or  

𝑔(𝐼) =
1

1 + |∇𝐼|/𝜆
, 

where (∗) denotes the convolution operator, 𝐺𝛾  is 

the Gaussian filter with standard derivation of 𝛾, 𝜆 
and 𝑐 are constant positive values. 
In fact, in nonlinear diffusion, when the smoothing 
depends on the current diffused image, we get a 

nonlinear equation for the smoothing. Finding a 
suitable parameter 𝜆  in the diffusion coefficient is 
still a challenge[27].  
The fractional form of nonlinear anisotropic 
diffusion equation (NADE) have been studied by 
several researchers (see for instance [29]). In fact, an 
arbitrary selection of the order of derivative, allows 
us to control the diffusion. The fracional derivative 
can be applied on the dynamic term (lef hand) of 
(1)[7] or its right hand side[12, 32]. By Euler-
Lagrange equation of a cost functional, Bai and Feng 
in [7] proposed to apply it for image denoising. Janev 
et al. [13] proposed to use of a fully fractional NADE 
which interpolates between the parabolic and the 
hyperbolic PDE and, at the same time, between the 
second and the fourth order PDE. In 2018, Bai and 
Feng [8] proposed a new approach to denoise a 
noisy image. They have regarded the concept of 
fractional derivative as one kind of high-pass filter 
and generalized fractional derivative for a NADE 
satisfying some conditions. 
In this paper, we consider a fractional form of NADE 
such that the Grünwald-Letnikov fractional 
derivative is used. For a function 𝑓, it is defined by 
[20]  

𝐷𝑡
𝛼𝑓(𝑡)𝑎

𝐺−𝐿 = lim
ℎ→0

1

ℎ𝛼
∑ (−1)𝑖(𝛼

𝑖
)𝑓(𝑡 − 𝑖ℎ),

[
𝑡−𝑎

ℎ
]

𝑖=0
                                                                              

(2) 
 where the positive real number 𝛼  is the order of 
derivative, [𝑥] denotes the largest integer number 

less than or equal to 𝑥 and 𝛼
𝑖

 is defined as  

(
𝛼

𝑖
) =

𝛼(𝛼 − 1)⋯ (𝛼 − 𝑖 + 1)

𝑖!
. 

  
The fractional form of PMDE can be given by  
 

 

{
 

 
𝐷𝑡
𝛼𝐼(𝑥, 𝑦; 𝑡) = 𝑑𝑖𝑣(𝑔(𝐼)∇𝐼 )𝑎

𝐺−𝐿 ,      (𝑥, 𝑦, 𝑡) ∈ (0, 𝑎) × (0, 𝑏) × (0, 𝑇)

𝐼(𝑥, 𝑦; 0) = 𝐼0;                     0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏

𝐼(0, 𝑦; 𝑡) = 𝐼(𝑎, 𝑦; 𝑡) = 0;                     0 < 𝑦 < 𝑏. 0 < 𝑡 < 𝑇

𝐼(𝑥, 0; 𝑡) = 𝐼(𝑥, 𝑏; 𝑡) = 0;                     0 < 𝑥 < 𝑎. 0 < 𝑡 < 𝑇

                                  (3) 

  
where 0 < 𝛼 < 1, ∇𝐼 denotes the gradient of 𝐼 and 
𝑔(𝐼) is an edge-stopping function. The function 𝑔 is 
chosen such a way that satisfies 𝑔(𝐼(𝑥, 𝑦; 𝑡)) → 0 as 
𝑥 → ∞ or 𝑦 → ∞. This arises to stop diffusion across 
edges. Also, 𝐼0  is the original image. If it does not 
satisfy the boundary conditions, we extend the 
image with a black strip on the bounary of the image.  
 

3. Numerical Scheme 
 The numerical solution of NADE has been studied by 
several researchers. In 1998, Black et al[3] presented 
a floating method for the time dependent term of 
NADE. Moreover, they computed the magnitude of 
gradient at each pixel based on the difference of that 
pixel and mean value of the neighborhood pixels. In 
2002, Keeling and Stollberger[14] proposed to use of 
numerical scheme based upon finite differences and 
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single-step time stepping. Furthermore, for planar 
images, they have diagonally discretized the 
diffusion operator at the cell centroid. In 2011, Janev 
et al[13] suggested the Caputo fractional differential 
equation for time dependent term and got a Voltera 

integral equation of the second kind. Accordingly, 
they generated a sequence of numerical solution. In 
2016, Zho et al[33] proposed to use a generalization 
of the classical Adams-Bashforth-Moulton 
integrator. 

 
In order to give a numerical scheme for solving (3), at first the definition of Grünwald-Letnikov (2) can be 
rewritten by [30]  

𝐷𝑡
𝛼𝐼(𝑥, 𝑦; 𝑡)0

𝐺−𝐿 =
1

Δ𝑡𝛼
∑(−1)𝑖 (

𝛼

𝑖
) 𝐼(𝑥, 𝑦; 𝑡 − 𝑖Δ𝑡) + 𝑂(Δ𝑡),                                                       (4)

[
𝑡
Δ𝑡
]

𝑖=0

 

  
 Now, using the central differences of first derivative in space, the PMDE at point (𝑥𝑗 , 𝑦𝑘 , 𝑡𝑛) can be given by  

 
1

(Δ𝑡)𝛼
∑𝑛𝑖=0 (−1)

𝑖𝛼
𝑖
𝐼(𝑥𝑗 , 𝑦𝑘; 𝑡𝑛 − 𝑖Δ𝑡) + 𝑂(Δ𝑡)

=
𝜕

𝜕𝑥
(𝑔(𝐼)

𝜕𝐼

𝜕𝑥
)|(𝑥𝑗,𝑦𝑘,𝑡𝑛) +

𝜕

𝜕𝑦
(𝑔(𝐼)

𝜕𝐼

𝜕𝑦
)|(𝑥𝑗,𝑦𝑘,𝑡𝑛)

=
1

Δ𝑥
[𝑔(𝐼)

𝜕𝐼

𝜕𝑥
|
(𝑥𝑗+

1

2
,𝑦𝑘,𝑡𝑛)

− 𝑔(𝐼)
𝜕𝐼

𝜕𝑥
|
(𝑥𝑗−

1

2
,𝑦𝑘,𝑡𝑛)

] + 𝑂(Δ2𝑥)

+
1

Δ𝑦
[𝑔(𝐼)

𝜕𝐼

𝜕𝑦
|
(𝑥𝑗,𝑦𝑘+

1

2
,𝑡𝑛)

− 𝑔(𝐼)
𝜕𝐼

𝜕𝑦
|
(𝑥𝑗,𝑦𝑘−

1

2
,𝑡𝑛)
] + 𝑂(Δ2𝑦)

= [
1

Δ𝑥
𝑔
𝑗+

1

2
,𝑘

𝑛 (
𝐼𝑗+1,𝑘
𝑛 −𝐼𝑗,𝑘

𝑛

Δ𝑥
+ 𝑂(Δ2𝑥)) −

1

Δ𝑥
𝑔
𝑗−

1

2
,𝑘

𝑛 (
𝐼𝑗,𝑘
𝑛 −𝐼𝑗−1,𝑘

𝑛

Δ𝑥
+ 𝑂(Δ2𝑥)) + 𝑂(Δ2𝑥)]

+ [
1

Δ𝑦
𝑔
𝑗,𝑘+

1

2

𝑛 (
𝐼𝑗,𝑘+1
𝑛 −𝐼𝑗,𝑘

𝑛

Δ𝑦
+ 𝑂(Δ2𝑦)) −

1

Δ𝑦
𝑔
𝑗,𝑘−

1

2

𝑛 (
𝐼𝑗,𝑘
𝑛 −𝐼𝑗,𝑘−1

𝑛

Δ𝑦
+ 𝑂(Δ2𝑦)) + 𝑂(Δ𝑦2)]

= 𝑔
𝑗+

1

2
,𝑘

𝑛 (𝐼𝑗+1,𝑘
𝑛 −𝐼𝑗,𝑘

𝑛 )

Δ2𝑥
− 𝑔

𝑗−
1

2
,𝑘

𝑛 (𝐼𝑗,𝑘
𝑛 −𝐼𝑗−1,𝑘

𝑛 )

Δ2𝑥

+ 𝑔
𝑗,𝑘+

1

2

𝑛 (𝐼𝑗,𝑘+1
𝑛 −𝐼𝑗,𝑘

𝑛 )

Δ2𝑦
− 𝑔

𝑗,𝑘−
1

2

𝑛 (𝐼𝑗,𝑘
𝑛 −𝐼𝑗,𝑘−1

𝑛 )

Δ2𝑦
+ 𝑂(Δ𝑥) + 𝑂(Δ𝑦).

 

 where  

𝐼𝑗,𝑘
𝑛 = 𝐼(𝑥𝑗 , 𝑦𝑘 ; 𝑡𝑛), 𝑔𝑗±1

2
,𝑘

𝑛 = 𝑔(𝐼(𝑥𝑗 ±
Δ𝑥

2
, 𝑦𝑘; 𝑡𝑛))  in which 𝐼(𝑥𝑗 ±

Δ𝑥

2
, 𝑦𝑘; 𝑡𝑛) =

𝐼(𝑥𝑗,𝑦𝑘;𝑡𝑛)+𝐼(𝑥𝑗±Δ𝑥,𝑦𝑘;𝑡𝑛)

2
 and 

𝑔
𝑗,𝑘±

1

2

𝑛 = 𝑔(𝐼(𝑥𝑗 , 𝑦𝑘 ±
Δ𝑦

2
; 𝑡𝑛)) in which 𝐼(𝑥𝑗 , 𝑦𝑘 ±

Δ𝑦

2
; 𝑡𝑛) =

𝐼(𝑥𝑗,𝑦𝑘;𝑡𝑛)+𝐼(𝑥𝑗±Δ𝑦,𝑦𝑘;𝑡𝑛)

2
.  

Then  

 

∑𝑛𝑖=0 (−1)
𝑖𝛼
𝑖
𝐼𝑗,𝑘
𝑛−𝑖 =

(Δ𝑡)𝛼

(Δ𝑥)2
[𝑔
𝑗+

1

2
,𝑘

𝑛 (𝐼𝑗+1,𝑘
𝑛 − 𝐼𝑗,𝑘

𝑛 ) − 𝑔
𝑗−

1

2
,𝑘

𝑛 (𝐼𝑗,𝑘
𝑛 − 𝐼𝑗−1,𝑘

𝑛 )]

+
(Δ𝑡)𝛼

(Δ𝑦)2
[𝑔
𝑗,𝑘+

1

2

𝑛 (𝐼𝑗,𝑘+1
𝑛 − 𝐼𝑗,𝑘

𝑛 ) − 𝑔
𝑗,𝑘−

1

2

𝑛 (𝐼𝑗,𝑘
𝑛 − 𝐼𝑗,𝑘−1

𝑛 )]

+ (Δ𝑡)𝛼(𝑂(Δ𝑥) + 𝑂(Δ𝑦)) + 𝑂((Δ𝑡)1+𝛼).

 (5) 

 Let 𝐼𝑗,𝑘
𝑛  be an approximation of 𝐼𝑗,𝑘

𝑛  at point (𝑥𝑗 , 𝑦𝑘 ; 𝑡𝑛). In view of (5), an implicit numerical scheme of (3) is 

given by:  

 

∑𝑛𝑖=0 (−1)
𝑖𝛼
𝑖
𝐼𝑗,𝑘
𝑛−𝑖 =

(Δ𝑡)𝛼

(Δ𝑥)2
[𝑔
𝑗+

1

2
,𝑘

𝑛 (𝐼𝑗+1,𝑘
𝑛 − 𝐼𝑗,𝑘

𝑛 ) − 𝑔
𝑗−

1

2
,𝑘

𝑛 (𝐼𝑗,𝑘
𝑛 − 𝐼𝑗−1,𝑘

𝑛 )]

+
(Δ𝑡)𝛼

(Δ𝑦)2
[𝑔
𝑗,𝑘+

1

2

𝑛 (𝐼𝑗,𝑘+1
𝑛 − 𝐼𝑗,𝑘

𝑛 ) − 𝑔
𝑗,𝑘−

1

2

𝑛 (𝐼𝑗,𝑘
𝑛 − 𝐼𝑗,𝑘−1

𝑛 )] .
 (6) 

 As usual, in image processing we take Δ𝑥 = Δ𝑦 = 1, therefore, the implicit difference numerical scheme, (6), 
is summarized as follows:  

 
∑𝑛𝑖=0 (−1)

𝑖𝛼
𝑖
𝐼𝑗,𝑘
𝑛−𝑖 = (Δ𝑡)𝛼[𝑔

𝑗+
1

2
,𝑘

𝑛 (𝐼𝑗+1,𝑘
𝑛 − 𝐼𝑗,𝑘

𝑛 ) − 𝑔
𝑗−

1

2
,𝑘

𝑛 (𝐼𝑗,𝑘
𝑛 − 𝐼𝑗−1,𝑘

𝑛 )

+ 𝑔
𝑗,𝑘+

1

2

𝑛 (𝐼𝑗,𝑘+1
𝑛 − 𝐼𝑗,𝑘

𝑛 ) − 𝑔
𝑗,𝑘−

1

2

𝑛 (𝐼𝑗,𝑘
𝑛 − 𝐼𝑗,𝑘−1

𝑛 )],
 (7) 

 with  
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{
 
 

 
 𝐼𝑗,𝑘

0 = 𝐼0(𝑥𝑗 , 𝑦𝑘; 0)        1 ≤ 𝑗 ≤ 𝑁1,    1 ≤ 𝑘 ≤ 𝑁2, .2𝑐𝑚

𝐼0,𝑘
𝑛 = 𝐼𝑁1,𝑘

𝑛 = 0                    1 ≤ 𝑘 ≤ 𝑁2,      𝑛 = 1,2,⋯ , .2𝑐𝑚

𝐼𝑗,0
𝑛 = 𝐼𝑗,𝑁2

𝑛 = 0                    1 ≤ 𝑗 ≤ 𝑁1       𝑛 = 1,2,⋯ . .2𝑐𝑚
 (8)

 
  

4  Stability 
 The stability of a numerical approach for NADE has 
been studied in some literatures (see for 
instance[?]), however, presenting some conditions 
under which a numerical scheme for a fractional 
form of NADE is stable has been less verified. In this 
section, we express the conditions under which the 
numerical scheme (7) with initial and boundary 
conditions (8) is stable. To this end, assuming  
 

 
 

∥ 𝐼𝑛 ∥∞= max
1≤𝑗≤𝑁1
1≤𝑘≤𝑁2

|𝐼𝑗,𝑘
𝑛
|, 

 we have the following theorem can be expressed:  
The implicit numerical scheme defined by (7)-(8) is 
conditionally stable with respect to the norm ∥. ∥∞ 
and  
 

∥ 𝐼𝑛 ∥∞≤ 𝑐 ∥ 𝐼
0 ∥∞, 𝑛 = 0,1,2, … , (9) 

 

Where 𝑐 is a constant value.  Proof: First, by (7) we have:  

 
[1 + (Δ𝑡)𝛼(𝑔

𝑗+
1

2
,𝑘

𝑛 + 𝑔
𝑗−

1

2
,𝑘

𝑛 + 𝑔
𝑗,𝑘+

1

2

𝑛 + 𝑔
𝑗,𝑘−

1

2

𝑛 )] 𝐼𝑗,𝑘
𝑛 + ∑𝑛𝑖=1 (−1)

𝑖𝛼
𝑖
𝐼𝑗,𝑘
𝑛−𝑖

= (Δ𝑡)𝛼(𝑔
𝑗+

1

2
,𝑘

𝑛 𝐼𝑗+1,𝑘
𝑛 + 𝑔

𝑗−
1

2
,𝑘

𝑛 𝐼𝑗−1,𝑘
𝑛 + 𝑔

𝑗,𝑘−
1

2

𝑛 𝐼𝑗,𝑘−1
𝑛 + 𝑔

𝑗,𝑘+
1

2

𝑛 𝐼𝑗,𝑘+1
𝑛 ).

 (10) 

 Let 𝑔𝑛 = inf
𝑗,𝑘
{𝑔
𝑗+

1

2
,𝑘

𝑛 + 𝑔
𝑗−

1

2
,𝑘

𝑛 + 𝑔
𝑗,𝑘+

1

2

𝑛 + 𝑔
𝑗,𝑘−

1

2

𝑛 } , 𝐺𝑛 = sup
𝑗,𝑘
{𝑔
𝑗+

1

2
,𝑘

𝑛 + 𝑔
𝑗−

1

2
,𝑘

𝑛 + 𝑔
𝑗,𝑘+

1

2

𝑛 + 𝑔
𝑗,𝑘−

1

2

𝑛 }  and 𝑀 =

max𝑛∈ℕ{𝐺
𝑛 − 𝑔𝑛}. 

Now, by noting that 𝑔 is non-negative, in view of (10)  

 [1 + (Δ𝑡)𝛼𝑔𝑛]𝐼𝑗,𝑘
𝑛 + ∑𝑛𝑖=1 (−1)

𝑖𝛼
𝑖
𝐼𝑗,𝑘
𝑛−𝑖 ≤ (Δ𝑡)𝛼𝐺𝑛 ∥ 𝐼𝑛 ∥∞.  (11) 

 Since, (11) satisfies for all 𝑗, 𝑘, then,  

 [1 + (Δ𝑡)𝛼𝑔𝑛] ∥ 𝐼𝑛 ∥∞+ ∑
𝑛
𝑖=1 (−1)

𝑖𝛼
𝑖
∥ 𝐼𝑛−𝑖 ∥∞≤ (Δ𝑡)𝛼𝐺𝑛 ∥ 𝐼𝑛 ∥∞.  (12) 

 Thus,  

 (1 − (Δ𝑡)𝛼(𝐺𝑛 − 𝑔𝑛)) ∥ 𝐼𝑛 ∥∞≤ ∑𝑛𝑖=1 (−1)
𝑖+1𝛼

𝑖
∥ 𝐼𝑛−𝑖 ∥∞.  (13) 

 If Δ𝑡 < (
1

𝑀
)1/𝛼, then 𝐹 = 1 −𝑀(Δ𝑡)𝛼 > 0 that implies  

∥ 𝐼𝑛 ∥∞≤
1

(1−(Δ𝑡)𝛼(𝐺𝑛−𝑔𝑛))
∑𝑛𝑖=1 (−1)

𝑖+1𝛼
𝑖
∥ 𝐼𝑛−𝑖 ∥∞≤

1

𝐹
∑𝑛𝑖=1 (−1)

𝑖+1𝛼
𝑖
∥ 𝐼𝑛−𝑖 ∥∞. (14) 

 By induction on 𝑛, we show that  

 ∥ 𝐼𝑛 ∥∞≤ (
1

𝑛
𝑥 + ∑𝑛−1𝑖=2 2

𝑖−2𝑥𝑖 + 𝑥𝑛) ∥ 𝐼0 ∥∞ ,        𝑛 ≥ 3, (15) 

 where 𝑥 =
𝛼

𝐹
. For 𝑛 = 1,2 and 𝑛 = 3, by (14) we have:  

 

𝑛 = 1 ⟹ ∥ 𝐼1 ∥∞ ≤
𝛼

𝐹
∥ 𝐼0 ∥∞= 𝑥 ∥ 𝐼0 ∥∞,

𝑛 = 2 ⟹ ∥ 𝐼2 ∥∞ ≤
1

𝐹
(𝛼 ∥ 𝐼1 ∥∞+

𝛼(1−𝛼)

2
∥ 𝐼0 ∥∞) ≤ ((

𝛼

𝐹
)2 +

1

2
(
𝛼

𝐹
)) ∥ 𝐼0 ∥∞≤ (𝑥2 +

1

2
𝑥) ∥ 𝐼0 ∥∞,

𝑛 = 3 ⟹ ∥ 𝐼3 ∥∞ ≤
1

𝐹
(𝛼 ∥ 𝐼2 ∥∞+

𝛼(1−𝛼)

2
∥ 𝐼1 ∥∞+

𝛼(1−𝛼)(2−𝛼)

3!
∥ 𝐼0 ∥∞)

≤
𝛼

𝐹
(∥ 𝐼2 ∥∞+

1

2
∥ 𝐼1 ∥∞+

1

3
∥ 𝐼0 ∥∞) ≤ ((

𝛼

𝐹
)3 + (

𝛼

𝐹
)2 +

1

3
(
𝛼

𝐹
)) ∥ 𝐼0 ∥∞

≤ (𝑥3 + 𝑥2 +
1

3
𝑥) ∥ 𝐼0 ∥∞≤ (𝑥3 + 2𝑥2 +

1

3
𝑥) ∥ 𝐼0 ∥∞,

  

(16) 
 that satisfies the inequality (15) for 𝑛 = 3. Now, we assume that (15) holds for 𝑛 = 1,2, … ,𝑚 − 1. We show 
that (15) satisfies for 𝑛 = 𝑚.  
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∥ 𝐼𝑚 ∥∞ ≤
1

𝐹
(𝛼 ∥ 𝐼𝑚−1 ∥∞+

𝛼(1−𝛼)

2!
∥ 𝐼𝑚−2 ∥∞+⋯+

𝛼(1−𝛼)(2−𝛼)…(𝑚−1−𝛼)

𝑚!
∥ 𝐼0 ∥∞)

≤ 𝑥(∥ 𝐼𝑚−1 ∥∞+
1

2
∥ 𝐼𝑚−2 ∥∞+⋯+

1

𝑚
∥ 𝐼0 ∥∞)

⋮

≤ (𝑥𝑚 + 2𝑚−3𝑥𝑚−1 +⋯+ 2𝑥2 +
1

𝑚
𝑥) ∥ 𝐼0 ∥∞.

 (17) 

 Now, if 𝑥 < 1/2, then the geomteric series implies that  

 ∑𝑛−1𝑖=2 2
𝑖−2𝑥𝑖 ≤ ∑∞𝑖=2 2

𝑖−2𝑥𝑖 =
𝑥2

1−2𝑥2
. (18) 

 Finally, in view of (15) and (18)  

 ∥ 𝐼𝑛 ∥∞≤
𝑥2

1−2𝑥2
∥ 𝐼0 ∥∞≤ 𝑐 ∥ 𝐼

0 ∥∞. (19) 

   

Theorem 1 states that the numerical scheme defined by (7)-(8) is stable if 
𝛼

𝐹
= 𝑥 < 1/2 and 𝐹 > 0. That is, the 

scheme is stable if  

 𝛼 < 1/2,        Δ𝑡 < (
1−2𝛼

𝑀
)1/𝛼 . 

  In the given numerical scheme, if we use the derivatives such as Prewitt or Roberts instead of forward 
derivative, a similar result will be obtained. In fact, just the value of 𝐹 will be changed such that for Prewitt 
operator, 𝐹 = 1 − 16𝑀(Δ𝑡)𝛼 and for Roberts operator, 𝐹 = 1 − 12𝑀(Δ𝑡)𝛼 will be derived.   

 

5. Convergence 
 Let 𝐼 be the exact solution of (8). Take Δ𝑥 = Δ𝑦 = 1, 𝑒𝑗,𝑘

𝑛 : = 𝐼𝑗,𝑘
𝑛 − 𝐼𝑗,𝑘

𝑛  for 1 ≤ 𝑗 ≤ 𝑁1, 1 ≤ 𝑘 ≤ 𝑁2, 𝑛 ≥ 0. It 

follows from (5) and (7) that  

 
∑𝑛𝑖=0 (−1)

𝑖𝛼
𝑖
𝑒𝑗,𝑘
𝑛−𝑖 = (Δ𝑡)𝛼[𝑔

𝑗+
1

2
,𝑘

𝑛 (𝑒𝑗+1,𝑘
𝑛 − 𝑒𝑗,𝑘

𝑛 ) − 𝑔
𝑗−

1

2
,𝑘

𝑛 (𝑒𝑗,𝑘
𝑛 − 𝑒𝑗−1,𝑘

𝑛 )0.3𝑐𝑚

+ 𝑔
𝑗,𝑘+

1

2

𝑛 (𝑒𝑗,𝑘+1
𝑛 − 𝑒𝑗,𝑘

𝑛 ) − 𝑔
𝑗,𝑘−

1

2

𝑛 (𝑒𝑗,𝑘
𝑛 − 𝑒𝑗,𝑘−1

𝑛 )] + 𝑂((Δ𝑡)𝛼).
 

 Then,  

 
𝑒𝑗,𝑘
𝑛 = −∑𝑛𝑖=1 (−1)

𝑖𝛼
𝑖
𝑒𝑗,𝑘
𝑛−𝑖 + (Δ𝑡)𝛼[𝑔

𝑗+
1

2
,𝑘

𝑛 (𝑒𝑗+1,𝑘
𝑛 − 𝑒𝑗,𝑘

𝑛 ) − 𝑔
𝑗−

1

2
,𝑘

𝑛 (𝑒𝑗,𝑘
𝑛 − 𝑒𝑗−1,𝑘

𝑛 )

+ 𝑔
𝑗,𝑘+

1

2

𝑛 (𝑒𝑗,𝑘+1
𝑛 − 𝑒𝑗,𝑘

𝑛 ) − 𝑔
𝑗,𝑘−

1

2

𝑛 (𝑒𝑗,𝑘
𝑛 − 𝑒𝑗,𝑘−1

𝑛 )] + 𝑐((Δ𝑡)𝛼),
 

 where 𝑐 > 1 is a constant value. Hence, similar to the proof of Theorem 4  

 ∥ 𝑒𝑛 ∥∞≤
∑𝑛𝑖=1 |𝛼𝑖

|∥𝑒𝑛−𝑖∥∞+𝑐(Δ𝑡)
𝛼

1−(Δ𝑡)𝛼(𝐺𝑛−𝑔𝑛)
≤

∑𝑛𝑖=1 |𝛼𝑖
|∥𝑒𝑛−𝑖∥∞+𝑐(Δ𝑡)

𝛼

1−𝑀(Δ𝑡)𝛼
.  (20) 

 Let 𝛼𝑖 = |𝛼
𝑖
| for 𝑖 = 1,2,3,⋯. It is readily seen that  

 𝛼𝑖 ≤
1

𝑖
𝛼        𝑖 = 1,2,3,⋯ .  (21) 

 From (20) it follows that for 𝑛 = 1,  

 ∥ 𝑒1 ∥∞≤
𝛼1∥𝑒

0∥∞+𝑐(Δ𝑡)
𝛼

1−𝑀(Δ𝑡)𝛼
≤

𝐶

𝐹
(Δ𝑡)𝛼 , 

since 
1

1−𝑀(Δ𝑡)𝛼
<

1

𝐹
. For 𝑛 = 2,  

 ∥ 𝑒2 ∥∞≤
𝛼1∥𝑒

1∥∞+𝛼2∥𝑒
0∥∞+𝑐(Δ𝑡)

𝛼

1−𝑀(Δ𝑡)𝛼
≤

1

𝐹
(𝛼1

𝐶

𝐹
+ 𝐶)(Δ𝑡)𝛼 =

𝐶

𝐹
(
𝛼1

𝐹
+ 1)(Δ𝑡)𝛼 . 

For 𝑛 = 3,  

 

∥ 𝑒3 ∥∞ ≤
𝛼1∥𝑒

2∥∞+𝛼2∥𝑒
1∥∞+𝛼3∥𝑒

0∥∞+𝑐(Δ𝑡)
𝛼)

1−𝑀(Δ𝑡)𝛼

≤
1

𝐹
[𝛼1

𝐶

𝐹
(
𝛼1

𝐹
+ 1) + 𝛼2

𝐶

𝐹
+ 𝐶] (Δ𝑡)𝛼

≤
𝐶

𝐹
[(
𝛼1

𝐹
)2 + 2(

𝛼1

𝐹
) + 1)] (Δ𝑡)𝛼 .

 

 In the last inequality, we used the relation(21). Repeating this process implies that  

 ∥ 𝑒𝑛 ∥∞≤
𝐶

𝐹
[(
𝛼

𝐹
)𝑛 + 𝑛(

𝛼

𝐹
)𝑛−1 + (𝑛 − 1)(

𝛼

𝐹
)𝑛−2 +⋯+

𝛼

𝐹
+ 1] (Δ𝑡)𝛼 .  (22) 

 Letting 𝑓𝑛(𝑥) = ∑𝑛𝑖=1 𝑥
𝑖  for 0 < 𝑥 < 1  and recalling that lim𝑛→∞𝑓𝑛(𝑥) =

1

1−𝑥
 and lim𝑛→∞𝑓𝑛

′(𝑥) =
1

(1−𝑥)2
, in 

view of (22) it follows that  
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 ∥ 𝑒𝑛 ∥∞≤
𝐶

𝐹

(Δ𝑡)𝛼

(1−
𝛼

𝐹
)2
=

𝐶𝐹

(𝐹−𝛼)2
(Δ𝑡)𝛼 = 𝐶∗(Δ𝑡)𝛼 ,  (23) 

 

where 𝐶∗ =
𝐶𝐹

(𝐹−𝛼)2
.  In (23), we used this reality that 

𝛼

𝐹
< 1.  Thus ∥ 𝑒𝑛 ∥∞≤ 𝐶∗(Δ𝑡)𝛼  and the scheme is 

convergent. 
 

6  Numerical Experiments 
 In this section, we implement the given numerical 
scheme for Perona-Malik formulation that is 
applicable for denoising, enhancing a low-contrast 
image or deblurring a blurred image. The implicit  

 
system given by (7) is numerically solved by Jacobi 
iterative method. The stop criterion is thought of as 

∥ 𝐼𝑛+1 − 𝐼𝑛+1 ∥∞≤ 𝜖  where 𝜖  is an acceptable 
tolerance. For all examples, we considered 𝑔(𝐼) =
1/(1 + |∇𝐼|/𝜆).  

 
Example 1  

[a]   [b]  

[c]  [d]  
 
 

Figure  1:  Denoising an image : (a) Original noisy image . The output of the scheme for diffusion coefficient of 
(b) 𝜆 = 0.2. (c) 𝜆 = 0.1 and 𝜆 = 0.02. 

For the first example, we consider a color image (Figure 1(a)) of size 500 × 500 which is a noisy image by salt 
and pepper noise. In order to denoise this image, we apply the numerical scheme of (7) by 𝛼 = 0.4 and Δ𝑡 =
0.003. Moreover, the diffusion coefficient is considered with different values of 𝜆. The dimension of the 

resulting system will be 250000 × 250000 for each of the red, green and blue colors. Figures (1b)-(1d) show 
the implementation of our Peronal-Malik scheme with diffusion parameter 𝜆 = 0.2,0.1 and 𝜆 = 0.02, 

respectively. As is seen, the denoising is sensetive to the value of 𝜆 and for 𝜆 = 0.2 the best denoising is 
happened. That is because the gradient magnitude in diffusion coefficient 𝑔(𝐼) is used to detect an image 

edge or boundary as a step discontinuity in intensity. But If ∇𝐼 >> 𝜆 , then 𝑔(𝐼) → 0 , and there is no 
movement; If ∇𝐼 << 𝜆 , then 𝑔(𝐼) → 1, and isotropic diffusion (Gaussian filtering) is achieved. The average 

of elapsed CPU time is 28 seconds for 𝑇 = 10Δ𝑡. 
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Example 2 

 [a]   [b ]  

[c ]   [ d]  
 

Figure  2:  Denoising a Gaussina noisy image : (a) Original Gaussinan white noise image . The output of the 
scheme for diffusion coefficient of (b) 𝜆 = 1. (c) 𝜆 = 0.2 and 𝜆 = 0.1. 

  In the second example, we consider another color 
image (Figure 2(a)) of size 879 × 1440  which is a 
noisy image by Gaussian white noise with mean of 
zero and variance of 0.02. In order to denoise this 
image, we apply the numerical scheme of (7) by 𝛼 =
0.4  and Δ𝑡 = 0.003 . Moreover, the diffusion 
coefficient is considered with different values of 𝜆. 
The dimension of the resulting system will be 
1265760 × 1265760 for each of the red, green and 
blue colors. According to 𝑔(𝐼) = 1/(1 + |∇𝐼|/𝜆), as 
𝜆  tends to zero, the amount of |∇𝐼|  will be less 

effective and 𝑔(𝐼) will tend to zero. This means that 
for a very small value of 𝜆 , there is only a small 
change in the image. On the other hand, as 𝜆 tends 
to 1, the magnitude of |∇𝐼| will be more effective. 
Therefore, as 𝜆 tends to 1, we expect smoothness in 
the edges. Thus, for 𝜆 = 1 , a better result is 
expected. Figures (2b)-(2d) show the 
implementation of our Peronal-Malik scheme with 
diffusion parameter 𝜆 = 1,0.2  and 𝜆 = 0.1 , 
respectively. As is observed, for 𝜆 = 1  the best 
denoising is happened.  
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Example 3  

[a]   [b]   

[c ]   [ d]   
 
Figure  3:  Comparison of the given numerical scheme for Perona-Malik equation: (a) Original image. (b) The 

output of the scheme for 𝛼 = 0.4. (c) 𝛼 = 0.8 and 𝛼 = 1. 
 
  For the third example, we consider the low-
contrast image (3) of size 686 × 773 and present a 
comparison of the sharpening the image with the 
numerical scheme of Perona-Malik fractional 
differential equation (PMFDE) (7) with the 
conditions given in (8). We let 𝑀 = 2  and Δ𝑡 =
0.003 satisfying the stability condition for 𝛼 = 0.4. 
We use the Jacobi iteration method to solve the 
given system in the scheme. The dimension of this 
system is 530278 × 530278 . The Figures (3), (3) 
and (3) show the implementation of sharpening 
algorithm for 𝛼 = 0.4,0.8 and 1, respectively. Let 𝐼 

and 𝐼 be the original image and the image given by 
the numerical scheme (7) , respectively. The steps of 
sharpening algorithm are as follows:   

    1.  𝑔𝑚𝑎𝑠𝑘 = 𝐼 − 𝐼;  
    2.  𝐼 ̅ = 𝐼 + 𝑔𝑚𝑎𝑠𝑘.  

 Here, 𝐼 ̅is the output of the algorithm. As is seen, the 
lower 𝛼 , the better sharpening. For 𝛼 = 0.4 , a 
better enhancement is observed and for 𝛼 = 1, the 
image has very low contrast.  
  
Example 4 For the fourth example, we consider the 
Figure of "Lena" (Figure 4) of size 512 × 512 , 
therefore, the dimension of the resulting syetem will 
be 262144 × 262144. The aim is to blur the right 
eye of "Lena" (Figure 4) by the numerical scheme (7). 
Based on (7), when 𝛼  decreases, the value of 𝐼𝑗,𝑘

𝑛  

deceases and so we expect a dark blurring as 𝛼 
deacreases. Figures 3(b)-3(d) show the 
implementation of our scheme for 𝛼 = 0.6,0.8 and 
𝛼 = 1. It is observed that as the order of fractional 
derivative 𝛼 increases, the blurring would be lighter.  
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For all cases, the diffusion coefficient 𝜆 = 0.2  has 
been selected.  

 

[ a]   [ b]  

[c ]   [ d]  
Figure  4:  (a) The original image of Lena. Applying the numerical scheme based on PMFDE for blurring the 

right eye of Lena for (b) 𝛼 = 0.6 (c) 𝛼 = 0.8 and (d) 𝛼 = 1.  
   
 Example 5 For the last example, CT scan of a human 
head is considered in Figure 5 of size 512 × 512, 
that implies the dimension of 262144 × 262144 for 
the resulting syetem. Our aim is to blur whole of the 
image. Figures 5-5 show the implementation of the  
 
 

 
given numerical scheme with α = 0.4,0.3  and α =
0.2 , respectively. For all cases, Δt = 0.003  is 
considered. It is observed that as the fractional order 
α decreases, the measure of blurring increases. It is 
obviously concluded based on the relation (7).  
 

[ a]   [b]  

  [c]   [d]  
Figure  5:  (a) CT scan of a human head, and applying the numerical scheme on PMFDE for blurring the CT 

scan with (b) 𝛼 = 0.4, (c) 𝛼 = 0.3 and (d) 𝛼 = 0.2. 
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7. Conclusion 
In this paper, we have presented a numerical 
scheme for a fractional-order nonlinear anisotropic 
diffusion based on Perona-Malik PDE. This scheme is 
applicable for denoising a noisy image and 
enhancing a low-contrast image. We have proved 
that the scheme is convergence and conditionally 
stable. 
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