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Abstract 
Objective: Heart rate variability (HRV) is a useful measure to quantify autonomic nervous 
system (ANS) function. A short-term window (5 min) for HRV analysis has been adopted 
in many sleep studies to differentiate between rapid eye movement (REM) and non-REM 
(NREM) sleep. In this study, an ultrashort-term window (2 min) was proposed to overcome 
the problem that the short-term window cannot investigate instantaneous ANS changes 
during REM or NREM.  
Methods: We obtained a 10-minute HRV dataset from polysomnographic data for 21 
individual patients in both REM and NREM (N3 stage). This target dataset was analyzed by 
shifting the ultrashort-term and short-term windows forward by 2 s to create multiple 
power spectral densities (n=250 and n=140, respectively) with the short time Fourier 
transform (STFT). Three main frequency bands were investigated: very low frequency (Ln 
VLF), low frequency (ln LF), and high frequency (Ln HF).  
Results: The standard deviation (SD) of spectral profiles obtained by ultrashort-term 
windows was found to be a new potential indicator to differentiate REM and NREM 
(p<0.0001). How many times or whether the Ln LF/Ln HF ratio and Ln HF crossed the 
designated threshold line could be used to detect rapid ANS changes during both REM 
and NREM. Ln VLF and Ln LF were higher in REM than NREM, whereas Ln HF was lower.  
Conclusion: The results suggested that an ultrashort-term window based on the STFT with 
a time resolution of 2 s would be more useful for tracking rapid changes in ANS activity 
than a short-term window. 
Keywords: heart rate variability; rapid eye movement; power spectrum; autonomic 
nervous system; sleep 

 
1. Introduction 

Classification of sleep stages plays a critical role 
in the diagnosis of sleep diseases, such as 
obstructive sleep apnea, insomnia, and narcolepsy. 
Five sleep stages, in general, are categorized based 
on results of overnight standard polysomnography 
(PSG), which includes brainwave frequency bands 
and amplitudes from an electroencephalogram 
(EEG), an electrooculogram (EOG), and an 
electromyogram (EMG): rapid eye movement  
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(REM), and N1, N2, N3, and N4, known as non-
REM(NREM). The use of PSG for sleep-stage 
classification is cumbersome for patients. 
Therefore, recently, to overcome the shortcomings 
of PSG, heart rate variability (HRV) analysis using a 
single sensor has been introduced as an alternative. 
HRV represents the time intervals between two 
successive heartbeats, which are regulated by the 
activity of the autonomic nervous system (ANS) 
during sleep.  

In this study, two types of sleep, REM and NREM 
(N3 stage), were identified from short time Fourier 
transform (STFT) with an optimal window and time 
resolution in terms of HRV frequency parameters. 
STFT with an ultrashort-term (2 min) window and a 
time resolution of 2 s showed the ability to 
differentiate between sleep stages. In addition, 
spectral profiles, in the form of the mean and 
standard deviation (SD) of the four frequency-
domain HRV parameters derived from ultrashort-
term windows, were evaluated to detect rapid ANS 
changes. We showed that the SD obtained from an  
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ultrashort-term window was found to be a potential 
sleep stage indicator. The reliability of these HRV 
parameters was verified through a comparison with 
those from a short-term window. The results 
demonstrated that averaged trends of ultrashort-
term HRV parameters with time shift of 2 s were 
significantly correlated with those of short-term 
HRV parameters that have been traditionally 
referenced (p<0.0001, 95% CI).  

 
2. Literature reviews 

HRV analysis is a noninvasive method for 
investigating changes in ANS activity, as it evaluates 
the dominance between the parasympathetic 
nervous system (PNS) and sympathetic nervous 
system (SNS) (Task Force, 1996; Evans et al., 2013; 
Scheff et al., 2014; Soares-Miranda et al., 2014). 
Most studies have reported that HRV analysis, 
specifically analysis using a short-term (5 min) 
window, predicted ANS function by evaluating the 
degree of fluctuation in time- and frequency- 
domain HRV parameters (Ori et al., 1992; Kemp and 
Quintana, 2013; Goldberger et al., 2019). However, 
sleep-related clinical applications using short-term 
HRV analysis are limited because the associated 
spectral estimates do not reflect rapid ANS 
fluctuations over time, which are enough to 
differentiate REM and NREM. Regarding the 
response time to ANS stimuli, some studies have 
reported that the response time to a 
parasympathetic stimulus ranged from 0.2 to 0.6 s, 
whereas the response time to a sympathetic 
stimulus ranged over 1 s (Zygmunt and Stanczyk, 
2010; Colombo et al., 2015). These findings suggest 
that dynamic ANS activities can take place within 
seconds in various biological systems. To analyze 
these dynamic ANS activities, three main 
mathematical models have been proposed: the 
Fourier transform (FT), autoregressive (AR) spectral 
density, and wavelet transform (WT). The main 
drawback of FT and AR is that they lack time 
information, which is critical to detect sudden ANS 
changes for sleep studies. Therefore, the FT and AR 
methods recommended by HRV Task Force 
Guidelines (Task Force, 1996) show the 
disadvantage of only detecting relatively slow 
changes in autonomic status over minutes, 
depending on data length and model order, 
whereas both methods are widely applied in 
medical devices and research applications with 
numerous comparable results (Hyndman and 
Gregory, 1975; Chemla et al., 2005; Ziemssen et al., 
2008). For this reason, short time Fourier transform 
(STFT)-based spectral analysis that provides time-
frequency information has attracted many sleep  

 
researchers. For STFT for HRV analysis, it is 
important to set an optimal boundary between 
either high time resolution or high frequency 
resolution (Novak and Novak, 1993; Elsenbruch et 
al., 2000; Mainardi, 2009). Determining the 
frequency and time resolutions depends on which 
one is more important for the clinical application; 
the time resolution should be decided according to 
how fast ANS changes (Pola et al., 1996). For 
frequency resolution depending on HRV data 
length, some studies have reported the 
characteristics of frequency domain HRV 
parameters using different time windows (Malik et 
al., 1996; Li et al., 2019). WT, which provides good 
time-frequency information, has been increasingly 
applied, but it has a wide variety of wavelets that 
influence the time-frequency resolution, resulting 
in no generalized wavelet that is optimized for HRV 
analysis (Hossen et al., 2013; Ziemssen and 
Siepmann, 2019; Geng et al., 2020). WT-based HRV 
parameters using different wavelets must be more 
carefully considered than the STFT parameters, 
especially where the balance between PNS and SNS 
activities is assessed for HRV sleep studies. During 
sleep, a high frequency to low frequency ratio (Ln 
LF/Ln HF) among HRV parameters, which 
corresponds to the ANS balance, has been linked to 
various sleep-related disease states (Bonnet and 
Arand, 1997; Zhang et al., 2020). Additionally, it has 
been reported that decreased parasympathetic 
activity along with increased sympathetic activity 
during sleep is associated with an increased risk of 
cardiovascular disease in patients with obstructive 
sleep apnea (OSA) syndrome. OSA patients with 
coronary artery disease were also found to 
demonstrate SNS dominance over PNS (Burgess et 
al., 2004; Sessa et al., 2018; Nastałek et al., 2019). 
Regarding sleep stage, rapid eye movement (REM) 
and nonrapid eye movement (NREM) continuously 
alternate with sudden increases or decreases in 
vagal and sympathetic tones (Walsh et al., 1994; 
Dijk, 2008). To monitor this alternation, several 
studies have used an ultrashort-term window (1-2 
min) for a target HRV dataset of 30 min to 1 h to 
calculate the HRV spectrogram, but a time shift of 
20-30 s was determined to be the time resolution, 
resulting in no detection of rapid changes in 
spectral profiles (Kleiger et al., 2005; Pecchia et al., 
2018).  
 
3. Methods 
3.1 Subjects 

Twenty-one patients with clinical suspicion of 
OSA were qualified to participate in the study (age: 
40.43±13.26 years; BMI: 25.70±4.12; heart rate  
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associated with REM: 65.43±8.29 bpm, and heart 
rate associated with NREM: 63.67±8.05 bpm). We 
randomly selected 21 patients’ dataset from each 
stage to use in this study, after we excluded patients 
who have neurodegenerative diseases because 
they showed distorted sleep architecture. Standard 
overnight polysomnography (PSG) was performed 
for all subjects using a computerized 
polysomnographic device (Nox-A1, Nox Medical Inc. 
Reykjavik, Iceland). A 10 min segment from each 
REM and NREM period that was taken from stage 3 
(N3) sleep was selected to secure enough quality 
frequency-domain HRV parameters. None of the 
subjects had a history of any medical condition that 
could influence sympathovagal activity. This study 
adhered to the tenets of the Declaration of Helsinki 
and was approved by the Institutional Review Board 
of Hallym Medical University Chuncheon Sacred 
Hospital (IRB No. 2020-03-022). Additionally, the 
need for written informed consent was waived 
because this study was designed to be 
retrospective. 

We applied the paired-sample t-test and 
Pearson correlation coefficient to evaluate the 
difference between REM and NREM and the 
relationship between ultrashort-term and short-
term windows in terms of frequency-domain HRV 
parameters, respectively. The results were reported  

 
with correlation coefficient, p-value, and 95% 
confidence interval. The p-value lower than 5% 
(p<0.05) means that there are no statistically 
significant differences between ultrashort-term and 
short-term HRV parameters. 
 
3.2 Processing Scheme 

We used the commercial TAS9VIEW pulse 
analyzer (CANOPY9 RSA, IEMBIO Co., Ltd, 
Chuncheon, Republic of Korea) to obtain frequency-
domain HRV parameters with the STFT. Four 
spectral powers were analyzed by shifting 
predetermined segments that were termed 
“windows” (2 min and 5 min) forward by 2 s during 
the 10 min HRV target dataset, which were 
collected from each REM and NREM sleep stage. 
These spectral powers were total power (Ln TP), 
very low frequency (Ln VLF), low frequency (Ln LF), 
and high frequency (Ln HF). The term “window” 
refers to the moving time window that was used for 
continuous analysis as depicted in Fig. 1. A short-
term segment is traditionally defined to be 5 min in 
duration, and an ultrashort-term segment is defined 
to be 2 min. The number of results obtained from 
the ultrashort-term and short-term windows for 
each frequency-domain HRV parameter was 240 
and 150, respectively for a 10 min due to a time shift 
of 2 s (the time resolution).  

Fig. 1. The processing scheme for calculating power-spectral estimates based on a minimal 
nonoverlapping segment (2 s). 

 
3.3 Power Spectral Analysis 

The PSD measures the degree to which the 
energy of a normal-to-normal (NN) heartbeat 
interval signal in a time series is distributed in terms 
of frequency bands. The PSD was basically acquired 
by means of a discrete Fourier transform (DFT), 
which is similar to an analog fast Fourier transform 
(FFT) incorporating 1024 data points that were 
resampled by linear interpolation. HRV guidelines 
recommend that NN intervals be collected at a high 
(1 kHz) sampling frequency using either 
electrocardiogram (ECG) or photoplethysmogram 
(PPG) signals (Task Force, 1996). In our previous 

study, we found that there were no significant 
differences between HRV parameters at sampling 
frequencies of 1 kHz and 500 Hz, and that a 
sampling frequency lower than 500 Hz led to 
decreased Ln HF (Ahn and Kim, 2020). However, the 
current ECG embedded in the polysomnographic 
device measured NN intervals at a sampling 
frequency of 200 Hz with an interval of 333 ms, and 
a slight decrease in Ln HF was thus anticipated. The 
Fourier coefficient of the discrete time signal NN[n] 
is defined as follows: 

X[m] = ∑ NN[n]e−jωnN−1
n=0   (1) 

Because ω=2πf/Fs and f=mFs/N, we have 

1159 Jeom Keun Kim, Byeong Chan Lee, Dong-Kyu Kim, Jae Mok Ahn 



REVISTA ARGENTINA 

                                                       2020, Vol. XXIX, N°5, 1157-1167     DE CLÍNICA PSICOLÓGICA 

 

X[m] = ∑ NN[n]N−1
n=0 e−

j2πmn

N   (2) 
Here, N is the number of sampled points, m is 

the discrete frequency number for the frequency 
domain which ranges from 0 to N-1, and Fs is the 
sampling frequency. Equation (2) consists of a real 
part and an imaginary part for every frequency 
number m. Before the DFT calculation, the Hanning 
window was applied to input discrete time signals, 
NN[n]*w[n], and thus avoid a spectral leakage via 
the following equation: 

w[n] = 0.5 [1 − cos (2π
n

N−1
)] , 0 ≤ n ≤ N −

1  (3) 
Next, the STFT was applied to obtain a sequence 

of DFT results of multiple windows along with time 
information, t, which moves forward by 2 in the 
following equation: 

X[m, t] = ∑ w[n]NN[t + n]L−1
n=0 e−

j2πmn

N   (4) 
Finally, Ln HF, Ln LF, and Ln VLF were calculated 

in real time by integrating the spectral profiles with 
frequency bands as shown in the following 
equations: 

Ln HF = ln ∫ |X[m, t]2|dm
b

a
  (5) 

Ln LF = ln ∫ |X[m, t]2|dm
d

c
  (6) 

Ln VLF = ln ∫ |X[m, t]2|dm
f

e
  (7) 

where the Ln HF bands range between a=0.15 
and b=0.4 Hz, the Ln LF bands range between 
c=0.04 and d=0.15 Hz, and the Ln VLF bands range 
between e=0.0033 and f=0.04 Hz. Ln TP is defined  

 

 
as the summation of Ln VLF, Ln LF, and Ln HF. The 
power spectrum X[m, t] was calculated as the 
squared magnitude of all Fourier coefficients. 
 
Results 
4.1 Characteristics of the mean and SD of the 
frequency-domain HRV parameters 

A 10 min HRV target segment was divided into 
consecutive, individual, ultrashort-term (n=240) 
and short-term (n=150) 2 s windows. All frequency-
domain HRV parameters were averaged to 
discriminate REM from NREM and obtain the mean 
and SD of all mean values for each subject. We 
attempted to confirm which HRV parameters are 
most influenced by sleep stage. All HRV parameters 
fluctuated more during REM than during NREM 
regardless of the window size, as shown in Fig. 2. 
The HRV fluctuations in ultrashort-term windows 
were large compared to those in short-term 
windows in terms of all the frequency-domain 
parameters. This observation suggested that 
ultrashort-term HRV analysis could provide 
fundamental insights allowing us to detect 
reactions in the form of instantaneous changes in 
both parasympathetic and sympathetic activities. 
Ln LF/Ln HF variations, which correspond to the 
balance between sympathetic and parasympathetic 
activities were greater in ultrashort-term windows 
than in short-term windows, while they remained 
relatively consistent during NREM sleep compared 
to during REM sleep. 

Fig. 2. Comparison between ultrashort-term (n=240) and short-term (n=150) windows based on REM and 
NREM in terms of the SD of the mean values for 21 individual patients. 
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For ultrashort-term windows, the SD showed 

that discrimination between REM and NREM could 
clearly be achieved (p<0.001; 95% CI), while the 
mean showed a significant difference between REM 
and NREM, except for that of Ln TP (p=0.1297), as 
shown in Table 1. Therefore, the SDs could be better 
potential ANS fluctuation indices for providing 
clinical judgment on various sleep states than the  

 

 
means. For short-term windows, the means of the 
individual HRV parameters (Ln LF/Ln HF, Ln VLF, and 
Ln LF) showed statistically significant differences 
between REM and NREM (p<0.001), while the SDs 
showed a statistical significance for Ln TP and Ln HF 
(Table 2). These comparison results indicated that 
the SDs of HRV parameters obtained with an 
ultrashort-term window may be of greater potential 
to produce various sleep interpretations. 

Table 1. Paired-sample t-test results verifying the difference between REM and NREM under an ultrashort-
term window (95% CI). 

Ultrashort-term window (n = 21) 
REM NREM p-value 

Mean SD Mean SD Mean SD 

Ln LF/Ln HF 1.21 0.13 0.88 0.07 <0.0001 <0.0001 
Ln TP 7.61 0.52 7.30 0.24 0.1297 <0.0001 

Ln VLF 6.74 0.66 5.85 0.37 <0.0001 <0.0001 
Ln LF 6.55 0.70 5.70 0.49 0.0007 0.0006 
Ln HF 5.52 0.49 6.50 0.23 0.0007 0.0005 

 
Table 2. Paired-sample t-test results verifying the difference between REM and NREM under a short-term 
window (95% CI). 

Short-term window 
(n=21) 

REM NREM p-value 
Mean SD Mean SD Mean SD 

Ln LF/Ln HF 1.24 0.08 0.86 0.04 <0.0001 0.0039 
Ln TP 7.13 0.29 6.44 0.14 0.0032 0.0005 

Ln VLF 6.61 0.38 5.28 0.23 <0.0001 0.0112 
Ln LF 5.73 0.36 4.83 0.27 0.0010 0.1333 
Ln HF 4.72 0.28 5.61 0.12 0.0030 0.0003 

 
Fig. 3 shows the scale of the difference between 

both the REM and NREM spectral HRV parameters 
and the two windows. The trend in HRV parameters 
remained unchanged between the two windows 
while changing from a REM to a NREM sleep stage. 
The difference in Ln VLF between REM and NREM 
was anticipated due to smaller bin numbers in an 
ultrashort-term window than in a short-term 
window, but there was no significant difference 
between the ultrashort-term and short-term 
windows. However, during NREM sleep, a slight 
difference in the mean of Ln VLF was found 
between the ultrashort-term and short-term 
windows. This result suggested that NREM sleep 
involved a possible long-term regulatory factor that 
cannot be found in the REM period. Three 
frequency-domain parameters (not Ln HF) were 
reduced as the sleep stage changed from REM sleep 
to NREM sleep. This finding showed the same trend 
as HRV parameters obtained by a WT-based HRV 
analysis (Hossen et al., 2013) as well as a FFT-based 
HRV analysis (Bonnet and Arand, 1997; Kuo et al., 
2016).  
 
4.2 Characteristics of Spectral Profiles in 
Ultrashort-term and Short-term Windows 

Ultrashort-term windows may allow the 
detection of various sleep events, such as 
transitions between REM and NREM or vice versa, 
instant ANS changes during sleep stages, physical 
activity, respiration, and changes in cardiac 
autonomic activity. To confirm this ultrashort-term 
performance, spectral profiles for a subject are 
plotted in Fig. 4. Significantly more fluctuations 
were observed in spectral profiles from ultrashort-
term windows than from short-term windows. 
However, the increased number of fluctuations in 
ultrashort-term windows may be unstable because 
ultrashort-term windows have no sufficient 
frequency resolution that corresponds to frequency 
information. To investigate the degree to which 
spectral HRV parameters in an ultrashort-term 
window differ relative to those in a short-term 
window, the correlation coefficients (r) between the 
two windows were calculated for REM and for 
NREM (Table 3). No significant differences were 
found between the two windows for either REM or 
NREM (all p<0.05 and r>0.9), indicating that the 
spectral profiles of an ultrashort-term window were 
as stable as those of a short-term window. 
Specifically, the degree of ANS activity derived from 
ultrashort-term windows between sleep stages was  
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expected to influence sleep efficiency, but no linear 
relationship was found. Among HRV parameters, 
the spectral profiles of the Ln LF/Ln HF ratio and Ln 
HF were significantly different between REM and 
NREM, while those of the Ln VLF and Ln LF did not 
differ. The threshold value that could differentiate 
between REM and NREM in terms of spectral 
profiles was found to be 1.0 for the Ln LF/Ln HF ratio 
(both windows) and 6.0 (ultrashort-term window) 
and 5.0 (short-term window) for Ln HF. The crossing 
points between the two REM and NREM spectral 
profiles for the Ln LF/Ln HF ratio obtained by 
ultrashort-term windows could reflect rapid 
dynamic changes in ANS activity during sleep  

 
stages. No crossing points for Ln HF spectral profiles 
were found regardless of the window during both 
REM and NREM sleep stages for individual patients. 
A strong increase in Ln HF during NREM relative to 
that during REM was found, meaning that 
parasympathetic activation dominated over 
sympathetic activation throughout the sleep period 
regardless of sleep stage. Taken together, these 
findings suggest that the Ln LF/Ln HF ratio, its 
crossing points, and the least fluctuations in Ln HF 
derived from an ultrashort-term window may be 
potential predictors of sleep status, such as deep 
(N3) or light sleep (N1 and N2), or sleep stage (REM 
or NREM). 

Fig. 3. Comparison between the mean of the mean REM and NREM values from the ultrashort-term (n=240) 
and short-term (n=150) windows for 21 individual patients. 
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Fig. 4 Spectrogram of the REM and NREM from the ultrashort-term (suffix 2) and short-term windows (suffix 5) 
for a single subject. 
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Table 3 Ultrashort-term- and short-term-window Pearson correlation results (95% CI). 

Parameter 
REM NREM 

Correlation coefficient, r p-value Correlation coefficient, r p-value 

Ln LF/Ln HF 0.9667 <0.0001 0.9588 <0.0001 
Ln TP 0.9522 <0.0001 0.9567 <0.0001 

Ln VLF 0.9361 <0.0001 0.9801 <0.0001 
Ln LF 0.9745 <0.0001 0.9896 <0.0001 
Ln HF 0.9783 <0.0001 0.9957 <0.0001 

Discussion 
To overcome the shortcomings associated with 

a short-term window, we introduced an STFT with 
an ultrashort-term window and a time resolution of 
2 s. We found that HRV parameters obtained by an 
ultrashort-term HRV analysis with a time shift of 2 s 
were significantly correlated with a short-term HRV 
analysis in terms of the discrimination performance 
between REM and NREM (p<0.0001, 95% CI). 
Additionally, an ultrashort-term window could 
clearly detect rapid dynamic changes in ANS activity 
from spectral profiles, a function that a short-term 
window cannot provide. Interestingly, we found 
that Ln HF spectral profiles could be used to 
distinguish sleep stages (REM and NREM) with 
threshold of 6.0 for all patients and to track the 
rapid activation of parasympathetic tone during 
sleep if the HRV dataset was normalized. Therefore, 
an ultrashort-term window with a time shift of 2 s 
was useful and may replace the traditionally used 
short-term windows for various sleep 
interpretations. The SD as a new indicator for 
distinguishing sleep stages was found to be better 
in ultrashort-term windows than in short-term 
windows. 

A short-term HRV analysis showed smoother 
spectral profiles than ultrashort-term HRV analysis 
in terms of HRV fluctuations. Thus, a short-term 
window may make it easier to evaluate an entirely 
autonomic state during sleep, including 
discrimination performance between REM and 
NREM. Changes in Ln LF/Ln HF during both REM and 
NREM were found due to the decrease or increase 
in Ln HF. Among the frequency-domain HRV 
parameters, Ln HF fluctuated the least while 
maintaining a wider gap than Ln LF, and remained 
more consistent in NREM than in REM. This 
indicated that monitoring Ln HF in real time during 
the night period may be helpful in terms of building 
a health status score for a healthy person as well as 
devising customized treatments for patients with 
underlying diseases. Ln VLF components in 
ultrashort-term windows were considered to reflect 
slow regulatory mechanisms, such as the rennin-
angiotensin and thermoregulatory systems, during 
NREM sleep, because the mean Ln VLF in the two 

windows remained relatively unchanged despite 
large changes in both Ln LF and Ln HF during REM 
and NREM (Usui and Nishida, 2017). We propose 
that sleep efficiency could be associated with 
power spectral estimates, but these relationships 
still need to be proved.  

However, we have the limitations that there 
exist no sophisticated methods to prove the validity 
of ultrashort-term HRV features for sleep 
interpretation, compared to short-term HRV 
features. Also, a short-term window is subject to 
inherent limitations, such as failure to detect 
dynamic ANS activity, in particular the rapid 
changes in Ln HF and Ln LF/Ln HF. In addition, only 
21 subjects from each sleep stage may make it hard 
to determine if a predetermined line between Ln HF 
and Ln LF for spectral profiles is a potential index to 
classify sleep stages with high accuracy. In the 
future, ultrashort-term HRV features obtained by 
STFT while changing various time resolution and 
window sizes should be investigated for exploring 
the efficacy of sleep-stage classification. 
 
4. Implications 

The STFT-based power spectral estimates for 
HRV sleep analysis were applied by using two 
different window sizes with a time resolution of 2 s 
to investigate the characteristics of frequency-
domain HRV parameters during both REM and 
NREM. The SD representing HRV fluctuations 
showed great differentiation performance between 
REM and NREM in the ultrashort-term window. The 
results obtained by both windows supported other 
results, which demonstrated an increase in Ln HF 
component and a decrease in the Ln LF component 
when the sleep stage transitioned from REM to 
NREM. Our findings show the better characteristics 
of spectral profiles in ultrashort-term windows than 
short-term windows for the detection of rapid ANS 
activities. For instance, the number of crossing 
points at a threshold of 1.0 for Ln LF/Ln HF may 
become a therapeutic index during both REM and 
NREM. Additionally, we showed that as a newly 
proposed indicator, the SD obtained from STFT HRV 
analysis in ultrashort-term windows could be 
applied to discriminate between sleep stages.  
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In conclusion, sleep HRV analysis using an 

ultrashort-term window with a time shift of 2 s for 
the STFT method could be used to identify sleep 
stages as well as rapid physiological changes in 
response to instant sleep events. In future studies, 
we will apply an extremely ultrashort-term window 
based on the STFT with a time resolution of every 
heartbeat for sleep HRV analysis. This may take the 
form of a 1 min or 30 s window size for the 
evaluation of more detailed ANS activity, including 
discrimination between REM and NREM, light (N1 
and N2), and deep sleep (N3) stages, in-between 
sleep stages, and transitions from REM to NREM or 
vice versa. 
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