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Abstract 
Acceleration photoplethysmogram (APG) analysis is widely used to evaluate peripheral 
vascular status. However, it is difficult to detect the APG parameters that represent 
vascular health because the signal, which is obtained from the second derivative of a 
photoplethysmogram (PPG), is characterized by obscure inflection points. Therefore, in 
this study, we investigated an optimal sequence prediction model for APG signals using 
the long short-term memory (LSTM) neural networks, excluding the mathematical 
detection algorithm of five inflection points. To build an APG LSTM model, we used 5000 
APG training datasets and 1000 validation datasets to fit the stacked LSTM model. APG 
signals were obtained from six subjects, who had no atherosclerosis in the blood vessels. 
The 1000-training data per a subject were generated with different magnitudes and 
periods representing the time interval between two heartbeats.  An input training data 
length of 150 was used. Stacked LSTM for the number of hidden layers showed mean loss 
(0.000487 for 10 cells, 0.000111 for 100 cells, 0.000200 for 200 cells, and 0.000035 for 
300 cells), resulting in excellent prediction in differentiating the characteristics of the APG 
signal. The results indicate that an LSTM neural network with over 200 memory cells and 
four hidden layers for APG signal analysis can be used to assess vascular status changes 
and stiffness in the peripheral blood vessel wall. A limitation that various conventional 
detection methods have showed could be resolved through an introduction of a deep 
learning methodology. 
Keywords: acceleration photoplethysmogram, atherosclerosis, blood vessel, long short-
term memory, neural network. 

 
1. Introduction 

Acceleration photoplethysmogram (APG) 
analysis is of interest to clinicians and biomedical 
engineers. APG provides information that can 
quantify vascular status through an algebraic 
calculation of five inflection waves (a, b, c, d, and e 
peaks) in its signal. A vascular index using these five 
waves represents cardiac stroke, vascular 
compliance, vascular elasticity, ejection fraction, 
arterial pulse wave feature, and residual volume 
fraction in the peripheral blood vessel vein [1-4]. 
The APG waveform is derived from the second 
derivative of the photoplethysmogram (PPG), 
making its parameters more detectable than those 
of PPG. The PPG signal is generated when a 660-
1100 nm wavelength light-emitting diode (LED) 
transmits light through a subject’s index finger  
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while a photodiode detects absorption on the 
opposite side for every cardiac cycle [5]. 

The PPG waveform includes cardiovascular-
related information that, depending on age and 
specific diseases, is particularly useful for diagnosis 
and treatment [6-9]. However, the quality of the 
PPG signal is susceptible to measurement position, 
ambient environment, patient posture, changes in 
the autonomic nervous system, and measurement 
time. Therefore, feature extraction from an APG 
waveform generated by the second derivative of an 
inherently noisy PPG is difficult. Mathematically, a 
derivative of the PPG signal is accompanied by 
noise amplification owing to slope calculation 
characteristics, as shown in Fig. 1. Therefore, to 
extract APG parameters, studies have proposed 
various methodologies, including multimodal 
biometric recognition, use of a fourth derivative, 
pulse contour analysis, complete removal of 
motion artifacts, and direct morphological analysis 
using frequency-domain estimates [10-13]. There is 
still no robust method to accurately detect the five  
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inflection waves as APG parameters for calculating 
a vascular index to predict vascular age or vascular 
aging rate.  

However, with the increasing popularity of 
machine learning technology, a new study used a 
deep learning algorithm, and investigated 
measurement of blood pressure or hypertension 
stratification using the PPG signal itself without 
signal extraction [14,15]. The machine learning 
approach has been used for detection of atrial 
fibrillation from PPG time series, which produces 
morphological descriptors [16,17]. All PPG-based 
machine learning algorithms have been associated 
with the classification of blood pressure and 
electrocardiogram signals. However, there are no 
studies on the direct use of raw APG signals for 
training deep learning models to identify APG 
characteristics according to vascular status with 
aging.  

Therefore, we investigated an optimal deep 
learning model, the long short-term memory (LSTM) 
neural network with four hidden layers, in terms of 
the number of cells to minimize the loss involved in 
using raw APG data. Based on a deep learning  

 
model (LSTM), classification of APG type 
representing vascular aging information was 
carried out. LSTM is an advanced model of a 
recurrent neural network (RNN) architecture with 
memory to classify, process, and predict time series. 
The main reason that LSTM was chosen over the 
Markov model and other sequence learning models 
is to provide good results in various sequence 
lengths. To predict the sequence of the APG data 
after an arbitrary interval, a deep learning model 
with memory (such as LSTM) is required.  

This study fitted the LSTM model with 5000 
sequences of APG data and input different types of 
APG waveform ranging from type A to F. The 1000 
validation datasets were used to compare the 
predicted and expected APG sequences. The two 
sequences are plotted on the sample chart. The 
results indicate that the stacked LSTM with 256 
memory cells would be useful for predicting the 
next APG signal and examining the relationship 
between physical age and APG signals without 
using direct APG parameters obtained from a 
conventional detection algorithm. 
 

Figure 1. Acceleration plethysmogram (APG) waveform with five inflection features: (top) APG waveform 
without motion artifacts, and (bottom) APG waveform with motion artifacts. 

 
2. Material and methods 
2.1 Data Preparation 

Our study included six subjects in good health. 
PPG signals using SpO2 sensor embedded into 
polysomnography (PSG) were measured at a 
sampling frequency of 200 Hz, using a 
computerized polysomnographic device (Nox-A1, 

Nox Medical Inc. Reykjavik, Iceland). APG signals 
using a Canopy9 RSA pulse analyzer (TAS9VIEW, 
IEMBIO Co. Ltd, Chuncheon, South Korea) were 
obtained from the second derivative of the PPG 
signals with a 1D data sequence. For both the 
training and input data, to fit and predict the LSTM 
model, APG signals were sampled down to 100 Hz  
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to reduce the training time and converted to a 3D 
data frame to input an LSTM neural network.  

In the real world, because various cardiac cycles 
ranging from 30 bpm to 200 bpm are required for 
training the input data, all APG signals were created 
by using a random function to change the heart 
period step by step. In addition, the APG amplitude 
was simultaneously controlled to 50 % of the 
maximum amplitude by decrements of 1 %. Six 
different types of APG waveforms were selected 
from the PSG data to change compliance and 
elasticity in a peripheral blood vessel, which means 
that six subjects are found with individual types of 
blood vessels from type A to type F in Fig. 2. Finally, 
all the APG signals were standardized with a 
standard deviation (STD) of 1.0 and mean of 0.0. 
This is owing to the activation function of the LSTM 
being the sigmoid function for the input gate and 
tanh function for the input modulation gate; it has 
a range of [-1.0, 1.0]. For the training and test data, 
5000 and 1000 APG sequences with an individual 
dataset of 150 (corresponding to data length) were 
prepared, respectively. A data length of 150 was 
considered as it includes at least two or three 
cardiac cycles in a single frame.  

This study adhered to the tenets of the 
Declaration of Helsinki and was approved by the 
Institutional Review Board of Hallym Medical 
University Chuncheon Sacred Hospital (IRB No. 
2020-03-022). Additionally, the need for written 
informed consent was waived because this study 
was designed to be retrospective. 

Figure 2. Six types of APG waveform indicate the 
corresponding vascular status from A type, the 

best case, to F type, the worst case. 
 

2.2 Long Short-Term Memory (LSTM) 
The stacked LSTM network comprises many 

layers of neurons, which have recurrent 
connections so that the internal state of the 
previous layer from the previous time step is 
memorized to uniquely formulate an output. An 
LSTM layer consists of a set of recurrently 
connected blocks known as memory cells. Each 
memory cell contains one or more recurrently 
connected memory cells and three multiplicative 
gates. Each memory cell consists of three sigmoidal  

 
functions and one hyperbolic tangential function. 
The memory cells have weight parameters, which 
are used to weight input for the X[t] time step, 
output from the last X[t+n] time step, and internal 
state h[n] used in the calculation of the output for 
this time step. These weight parameters control the 
information flow as APG sequence data in the 
memory cell. The LSTM neural network interacts 
only with the memory cell via three gates, which are 
the key to the memory cell of the LSTM, as shown 
in Fig. 3. Fig. 3 illustrates how each memory unit in 
LSTM is composed with three gates: forget, input, 
and output gates.  

Figure 3. Multiple memory blocks in an LSTM 
contain four interacting layers (in gray): three 

sigmoidal functions and one hyperbolic tangential 
function. 

 
The forget gate (Fg[t]) decides which APG input 

data to abandon from the memory cell, input gate 
(Ig[t]) decides which APG input data to update the 
internal cell state with, c[t] (Fg[t]), and output gate 
(Og[t]) decides what to output based on the input, 
X[t] and internal cell state, c[t]. 

   For new information to be stored in the 
internal cell state, two cells are used. A sigmoid cell 
for input gate, Ig[t], that decides which APG data 
points will be updated, and a tanh cell creates a 
vector of new candidate data points, C^[t], which is 
added to the internal cell state. To update the old 
cell state, C[t-1], into the new cell state C[t], we 
multiplied the old internal state, C[t-1] by forget 
gate, Fg[t], and added Ig[t]*C^[t]. A sigmoid cell of 
Fg[t] outputs a number between 0 and 1, where a 1 
represents the keeping internal state whereas a 0 
represents the discarding internal state. The 
mathematical equations among all gates and 
weights are as follows 
𝐹𝑔[𝑡] = 𝜎(𝑊𝑓 ∙ [ℎ[𝑡 − 1], 𝑋[𝑡]] + 𝑏𝑓)                 (1) 

𝐼𝑔[𝑡] = 𝜎(𝑊𝑖 ∙ [ℎ[𝑡 − 1], 𝑋[𝑡]] + 𝑏𝑖)                      (2) 

𝐶^[𝑡] = tanh (𝑊𝐶 ∙ [ℎ[𝑡 − 1], 𝑋[𝑡]] + 𝑏𝐶)            (3) 

𝐶[𝑡] = 𝐹𝑔[𝑡] ∗ 𝐶[𝑡 − 1] + 𝐼𝑔[𝑡] ∗ 𝐶^[𝑡]               (4) 

𝑜[𝑡] = 𝜎(𝑊𝑜 ∙ [ℎ[𝑡 − 1], 𝑋[𝑡]] + 𝑏𝑜)                      (5) 

ℎ[𝑡] = 𝑜[𝑡] ∗ tanh (𝐶[𝑡])                                                      (6) 
where σ and h are the activation function of  
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sigmoid and hidden layer, respectively. A b and W 
represent the initial bias value and weight matrix, 
respectively. 

We built a stacked LSTM that has four hidden 
layers, where each layer contains multiple memory 
cells. Fig. 4 shows a stacked LSTM architecture in 
which an LSTM layer above provides an APG 
sequence output to the LSTM layer below. There 
are four layers which have the number of each 
memory cell with 256, 256, 128, and 64. Because 
the depth of the network was more important than 
the number of memory cells, we investigated 
stacked layers. The linear activation function was 
used for the output prediction, and the mean 
absolute error (MAE) loss function and Adam 
implementation of the gradient descent 
optimization algorithm were used. The entire work 
was carried out using Python application program. 

 

Figure 4. A stacked LSTM architecture with 150 
input time length and four hidden layers for 

prediction of APG signals. 
 
2.3 LSTM Parameters 

The time steps of the input APG sequence are 
150 with the matrix of (150,1), and each time step 
should have a single characteristic length. For the 
first LSTM layer in the calculation of parameters, 
the output length is 256 for each time step due to 
memory cells of 256, obtaining the matrix of (1,256).  

 
Each LSTM block consists of the forget gate, 
internalcell state gate, and output gate, such as 
equations (1), (4) and (5), respectively. The length 
of [ℎ[𝑡 − 1], 𝑋[𝑡]] in equation (1) is 257 due to the 
contribution of each time step and the cell number 
of 256 for the first layer (1+256), resulting in the 
matrix of (1,257). Therefore, the matrix of weight, 
𝑊𝑓, is (257,256), and the bias matrix, 𝑏𝑓, must be 

the matrix of (1,256) from 256 cells as well. Thus, a 
total number of parameters generated by the 
forget gate alone is 66,048 (257*256+256). The 
same goes for the internal cell state gate in the 
calculation of parameters, which is double the 
number of forget parameters, as there are no 
additional parameters for sigmoid and tanh 
functions in the matrix calculation. Therefore, the 
internal cell state gate generates 132,096 
(66,048*2). For the output gate, equation (5) is the 
same as equation (1) that the number of 
parameters has 66,048. Taken together, a total 
number of parameters combined with three gates 
lead to 264,192 for the first LSTM layer, as shown in 
Table 1. The same calculation method could be 
applied to the second, the third, and the fourth 
LSTM layer, resulting in trainable parameters of 
1,045,782. The last layer expresses the fully 
connected layer, with 64 cells plus 1 bias and the 
characteristic length of output, 150. 
 
Table 1. Parameters of four hidden layers for 
LSTM neural network. 

Layer (type Output Shape Param# 

Istm (LSTM) (None, 150, 256) 264,192 
Istm_1 (LSTM) (None, 150, 255) 525,312 
Istm_2 (LSTM) (None, 150, 128) 197, 120 
Istm_3 (LSTM) (None, 64) 49,408 
Dense (Dense) (None, 150) 9,750 

Total params: 1045,782 
Trainable params: 1045,782 

Non-trainable params: 0 

 
1. Results 

We investigated the behaviour of the stacked 
LSTM model by reviewing its prediction 
performance over 100 epochs and one batch size. 
During the compilation of the model, a trace of the 
loss and other metrics were displayed, as shown in 
Fig. 5. To measure the accuracy of each epoch, 1000 
validation APG datasets with 150-time steps was 
created to diagnose the behaviour of the stacked 
LSTM model. An increase in epochs resulted in an 
exponential drop in loss for the validation APG 
dataset (Fig. 5). The separate validation APG 
datasets were intentionally manipulated to 
combine motion artifacts. The result suggests that  
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performance on the APG train set and validation set 
continued to improve simultaneously from a plot 
where the train loss as well as validation loss sloped 
down. 

Figure 5. Plot of the losses in terms of APG 
training and validation datasets. 

 
However, the performance of the model 

demonstrated that the training loss was lower than 
the validation loss. Using these results, we 
confirmed that further improvements, such as 
more training datasets and accurate measurement 
of APG datasets, are possible for an optimal 
development of the LSTM model. To resolve this 
underfit model, the performance was improved by 
increasing the number of training epochs, the 
memory cells, and the stacked layers.  

Fig. 6 shows different performances of the 
model by increasing the number of memory cells 
according to [10, 100, 200, 300] array with 100 
training epochs. A box and whisker plot were 
generated to evaluate the distribution of model skill 
according to the number of memory cells. The 
optimal number of memory cells for stacked LSTM 
architecture cannot be precisely determined 
without adequate APG training datasets. A sharp 
decrease in loss was found at over 200 memory 
cells, where the number of an optimal memory cell 
of 256 could be determined for our study. 

Figure 6. Box and whisker plots of the results of 
tuning multiple memory cells [10, 100, 200, 300]. 

 
Therefore, we tested a group of different 

memory cells in LSTM hidden layers. While the 
number of memory cells is changed from 10 to 300, 
the stacked LSTM model was repeated five times. 
Summary statistics of the results for each number 
of memory cells after five repeats are listed in Table 
2.  
 
Table 2. Statistics of the results showing the 

performance of the stacked LSTM model for 
building an optimal model. *STD: standard 
deviation. 

Memory 
Cells 

10 100 200 300 

Repeat 5 5 5 5 

Mean 0.000487 0.000111 0.000200 0.000035 
*STD 0.000045 0.000060 0.000397 0.000034 
Min 0.000413 0.000034 0.000022 0.000018 
25% 0.000479 0.000086 0.000023 0.000019 
50% 0.000502 0.000117 0.000023 0.000020 
75% 0.000515 0.000121 0.000025 0.000024 
Max 0.000526 0.000198 0.000910 0.000096 

 
Minimal STD represents architecture suitability, 

which provides a consistent prediction in response 
to an input with a small change in amplitude. The 
STDs for 10, 100, 200, and 300 of memory cells 
were 0.000045, 0.000060, 0.000397, and 0.000034, 
respectively. In the case of over 250 cells, the STD is 
expected to be approximately zero. Therefore, for 
our application, four hidden LSTM layers with 
memory cells of 256 based on the performance 
predicted through five repeats were proposed. 

   The predicted and expected sequences for 
APG signals using the proposed model are plotted 
for comparison, as shown in Fig. 7. To evaluate how 
much two the APG sequences differ, the mean 
squared error (MSE) percentage that measures the 
average difference between the expected values 
(yhat) and predicted value (y) was calculated using 
the following equation. 

𝑀𝑆𝐸(%) =
1

𝑁
∑ (𝑦𝑖 − 𝑦ℎ𝑎𝑡𝑖)2𝑁

𝑖=1 ∗ 100                 (7) 

The MSEs (%) for 60, 120, 180, and 240 bpm 
were 1.49764, 4.27263, 4.03666, and 4.47466, 
respectively. The APG with a slow heart rate was 
more accurate than that with a fast heart rate. 
Taken together, the prediction appears to be a 
reasonable fit for the expected APG sequence. Prior 
to the implementation of the fit model in some 
machine learning algorithms, the APG dataset for 
sequence prediction problem must be standardized 
when training a stacked LSTM recurrent neural 
network, because APG signals have input values 
with differing scales. We rescaled the distribution  
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of values so that the mean value was 0 and the STD 
from subtracting the mean value was 1. As a result, 
a learning speed and efficiency for the proposed 
LSTM architecture were improved.  

The conventional method that extracts five 
inflection points on an APG signal has an inherent 
problem in detecting a heart rate with more than 
100 bpm. Among the five APG parameters, the c 
and d peaks could not be easily extracted because 
their positions in the time series were too close. In 
addition, it is impossible to detect APG parameters  

 
for APG signals with motion artifacts. However, a 
machine learning-based APG classification method 
for monitoring a vascular status could identify the 
characteristics of APG waveforms directly without 
measurements of APG parameters regardless of the 
heart rate. The stacked LSTM model could predict 
the degree to which APG signals contain motion 
artifacts as a value of the MSE (%). The decision to 
run the model for the APG signals being measured 
was based on the MSE (%), with the running model 
stopped when the MSE was greater than 5 %. 

  

  
Figure 7 Expected (y) and predicted (yhat) results according to four different cardiac cycles. 

 
Fig. 8 shows that six types of vascular health 

status obtained based on APG waveforms were 
predicted through a deep learning model, ranging 
from type A for the best status to type F for the 
worst status. Differentiating type E from F through 
a conventional detection method of APG 
parameters is technically difficult because the 
distance between two near-positions is very close 
to each other even without motion artifacts. In 
addition, as the distinction between type C and D is 
not clear, a traditional method made it difficult to 
distinguish them. A little change in subject’s 
movement during measurements may invalidate 
the test, resulting in a restart for a new test. 

However, with a deep learning algorithm, such as 
an LSTM neural network, these shortcomings were 
resolved when six types of signal feature 
representing health of various blood vessel were 
fed to the stacked LSTM with over 5000 APG 
sequences. The bottom panel showed that type E 
and F were correctly predicted when validation 
data of APG waveform was inputted to the stacked 
LSTM model. For elderly people aged 70 or over 
who have suffered from atherosclerosis in a 
peripheral blood vessel [18,19], APG waveform of 
type F obtained from a finger index is characterized 
as a difficult extraction of APG parameters, but it 
was well predicted. The type B waveform showed  
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slighter errors than those of other types around the 
middle location. To minimize these errors, many  

 
more training data representing features of type B 
are required.  

  

 
 

  

Figure 8 Expected (y) and predicted (yhat) results regarding all vascular types; type A, B, C, D, E, and F. 
 
2. Discussion 

This paper proposed an LSTM neural network 
model for predicting vascular health based on the 
APG waveform, where the one-dimensional 
datasets of APG signals in the time series were used 
as input data. The stacked LSTM model with four 
hidden layers was constructed after five repetitions 
for APG sequence prediction. Each hidden layer 

from input layer to the fourth layer was composed 
of 256, 256, 128, and 64 for the number of the 
memory cells, respectively. A stacking LSTM model 
has not been introduced to APG waveform-based 
parameter classification before. To build the input 
data, 5000 APG standardized training data from 
individual subjects, which included changes in both 
the amplitude and cardiac cycle, were prepared. It  
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took approximately eight hours to completely train 
the model using a notebook computer with Intel® 
Core™ i5-8250U@1.6GHz without a graphic 
processing unit. We achieved remarkable results 
showing no significant difference between the 
predicted value (y) and expected value (yhat) in less 
than 5 % of MSE, regardless of the level of heart 
rate. In addition, we showed that the relationship 
between the APG waveform and vascular index 
could be learned by a stacked LSTM neural network 
architecture without any extractions of the five APG 
waves, which are difficult to detect owing to the 
inherent noise characteristics. The performance of 
the stacked LSTM neural network was satisfactory 
in terms of the STD of the loss. However, many 
more APG training datasets that consider the 
characteristics of signal noise are necessary to meet 
all various vascular statuses. With a specific number 
of training datasets including motion artifacts, we 
evaluated the possibility that the stacked LSTM 
with four hidden layers could be applied to an APG 
study that predicted vascular aging. In the future, 
an LSTM neural network would be further applied 
to predict the degree of obstructive sleep apnoea 
during sleep from the relationship between 
vascular status and magnitude of APG signals, 
which have never been attempted before. 
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