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Abstract 
This paper uses a mathematical model for COVID-19 pandemic forecasting estimation. 
The continuum of mathematical and statistical models on communicable and non-
communicable diseases has shown a great concern for risk to human lives. The three 
terms of the SIR model, S (susceptible), I (infectious) and R (recovered), are the main 
factors of any disease model. This SIR model was introduced in 1927 for forecasting 
communicable diseases. The SIR model is a simple disease technique by which we can 
explain mathematically the spread of a virus through a population using mathematical 
models. The SIR model answers the main three question of this study under specific 
assumptions. The key parameter in the derivative equations is the value of Q, which is the 
ratio of contact and the proportion of the total population that comes into contact with 
a contaminated individual. In the COVID-19 outbreak, this value is very high and the virus 
is spreading fast. What we see is that, if the value of Q is high, then the disease will spread 
widely and will result in an epidemic (in our case, it is already at pandemic level). Hence 
what can we do to reduce the value of Q? This is why currently we are told to wash our 
hands, because, if we wash our hands, even if we have been in a contact with somebody 
with the disease, we are much less likely to then become infected. Similarly, social 
distancing tells us to  keep away from people, because if we stay away from other people 
we are reducing our probability of coming into contact with someone who has the disease 
and we are therefore contributing to reducing the value Q and controlling the spread. 
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Introduction 

The Coronavirus infectious disease known as 
COVID-19 started in the city of Wuhan, Mainland 
China, in December 2019. It has now already spread 
to more than 150 countries across the world. 
Initially the worst-affected countries have been in 
the European Union (EU), the United States of 
America (USA) and mainland China. As a result, 
normal social and economic life cycles, both in the 
domestic economy of those affected countries and 
in their foreign economic relations, have been 
severely damaged.  
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We have also seen signs of the exponential growth 
of COVID-19 cases in South Asian countries, 
including Pakistan and India. To understand the 
increase in and sensitivity to COVID-19 cases in the 
region, this study discusses the estimation of 
forecasting equations of SIR mathematical models. 

Mathematics has long been considered the 
pillar of sciences. Its applications range from 
mathematical sciences to biological and social 
sciences. Recently, statistical and mathematical 
models have become essential techniques in 
helping us maximize our understanding of disease 
spread, transmission and forecasting of 
infectiousness of communicable and non-
communicable diseases. Mathematical models 
have been of great interest across the world for 
diseases such as COVID-19. Chen, Yang and Dai 
(2020) assess the spread of COVID-19 by estimating 
the spread of the epidemic and providing 
recommendations on its prevention and control in 
the future. The dynamic mathematical modelling of 
infectious diseases is broadly based on their 
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compartmental composition. The SIR model 
consists of susceptibility (S) -infectious (I)-
recovered (R) characteristics for infectious disease. 
Initially, this mathematical technique/model for 
communicable disease was proposed by Kermack  
 
and McKendrick (1927), who named it SIR. In many 
instances in an infected population individual 
recovered or became part of a susceptible 
population or lost immunity and died (Rajasekar 
and Pitchaimani, 2019). 

The SIR model is a simple disease forecast model 
and can mathematically explain the spread of a 
virus in a target population. The history of 
mathematical modeling of infectious and non-
infectious diseases has attracted great attention. 
The dynamic models of infectious diseases are 
based mainly on their composition and structure, 
such as for the SIR characteristics of well-known 
infectious diseases, such as influenza, swine flu, 
plague, HIV/AIDS, malaria, etc. 
 
Objectives of the Research 

In this paper we identify the factors in the SIR 
model which need to be controlled to stop infection 
spread. This model can also be used to forecast the 
expected number of infections for a given period of 
time. We address the following three research 
questions:  
1. How do we calculate COVID-19 spread?  
2. What equations or model can give us a result for 

the expected number of individuals who will have 
COVID-19 at a particular time? 

3. How do we devise and interpret an equation 
about how many people will be affected by 
COVID-19 in total?  
To answer these questions, the following 

process is discussed in the context of the ongoing 
COVID-19 pandemic. The model tells us that, to 
minimize the impact of the spread, we need to 
lower the ‘contact ratio’ as much as possible – 
which is exactly what the current social distancing 

measures are designed to do. The SIR model can 
help us estimate different outputs in different  
 
regions. 

According to real-time data (Dong, Du and 
Gardner, 2020), positive COVID-19 cases are 
increasing exponentially in most countries around 
the world. Wuhan was the initial epicenter of 
COVID-19 which then further spread into Europe 
and America. At present the USA is the most 
infected country globally. The forecasting peak of 
any disease such as the flu, malaria or COVID-19 
dissemination plays a key role in policy making 
efforts to control the spread (Li et al., 2020; Zhou et 
al., 2019; Zhao et al., 2020; Liu, Gayle and Smith, 
2020). The epidemic has not yet ceased. However, 
effective measures have helped medical services 
provide passive medical care and helped decrease 
the death rate. Forecasting the peak can help us 
understand the growth rate. Perc et al. (2020) 
report from their research that the growth of 
COVID-19 should be kept to less than 5% to control 
the pandemic. 
 
The SIR Model  

The SIR model is based on a differential 
equation. In the first step of the model, we consider 
the dependent and independent variables. The 
independent variable is time t, measured in days. 
Similarly, we consider two related sets of 
dependent variables. The first set of dependent 
variables is the number of people in each of 
population group. Each of these populations is a 
function of time, t In conducting this study we are 
proposing a general model which can be used for 
any country or region. The population of our target 
countries is considered those who are ‘susceptible’. 
Mathematically, we express each of these 
population groups using the parameters 
Susceptible (S), Infective (I), and Recovered (R), 
which can be expressed as function of t as follows:  
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Figure 1. SIR Model flow and Rate of Change 

 
Using Susceptible S(t), Infectious I(t), and 

Recovered R(t), we can develop a simple equation:  
𝑺(𝒕) + 𝑰(𝒕) + 𝑹 (𝒕) = 𝑵  
where N is the total population. 

For t=0, we need to set up conditions: for 
example, at time t=0, at the beginning of the 
epidemic, this can be written as follows:  
S(0) = S0 

I(0) = I0 
R(0) = 0, that is, when there is no infection, the R(0) 
is Zero (0).  

The mathematical equations can be expressed 
as follows: 
𝒅𝑺

𝒅𝒕
= − 𝜷𝑺𝑰 

𝒅𝑰

𝒅𝒕
=  𝜷𝑺𝑰 −  𝜸𝑰 

𝒅𝑹

𝒅𝒕
= 𝜸𝑰 

where β is the transmission rate of infection, 
and ᵞ is the recovery rate of COVID-19. Those who 
are recovered once again become part of the 
susceptible class (S). 

 
Assumptions of the SIR model for COVID-19  

For all statistical and mathematical models, we 
must present propositions that simplify real 
phenomena, because they may be too complicated 
to express with certain set assumptions. Everything 
is expressed in a set of simple equations and 
assumptions. Thus our first assumption is that the 
epidemic is short enough and does not last for too 
long. Therefore we assume that the total 
population remains same.  

The second assumption in the SIR model is 
related to the way the disease spreads: we assume 
that the incidence of infectious diseases is 
proportional to the susceptibility and contact 
between infectious diseases, and we assume that 
this happens at a constant rate. 

Our final assumption relates to the discharge 
rate. In this category we are going to assume again 
that there is a constant rate: this could be a death 
rate or a recovery rate, but again we are going to 
assume it is constant. The recovered will again 
become part of the susceptible group (as described 
in Figure 2) and death can negate the new-born.  

 

220 Muhammad Imran, Mengyun Wu, Yun Zhao, Emrah Beşe, Muhammad J. Khan
 



REVISTA ARGENTINA 

                                                          2021, Vol. XXX, N°1, 218-226       DE CLÍNICA PSICOLÓGICA 

Figure 2. Recovered are added into Susceptibles 
 

In our study we are interested in S, I and R, the 
estimated calculation of the numbers of 
susceptibles, those infected and the recovered, 
respectively: 
𝒅(𝒔)

𝒅(𝒕)
=  −𝑹 𝑰 𝑺 … … … … … … … … … … … … … … . . (𝟏) 
 
SIR Model Derivation  

If we begin with the susceptibles, in Equation 1, 
according to our assumption, for the number of 
susceptible people over time we expect from 
Assumption 2 that this is going to decrease as 
people become infective and so the rate of change 
of the number of susceptibles is going to be 
negative, because it is decreasing the rate of 
contact (R), which is Assumption 2, and we said that 
this was proportional to the number of infectives (I) 
and the number of susceptible, so I and S  together 
symbolize the contact between the number of 
infectives and number of susceptibles and the (R) is 
the contact rate between them. 

Now for the infectives we have a similar 
differential equation to consider the rate of change: 
𝒅(𝑰)

𝒅(𝒕)
= 𝑹 𝑰 𝑺
− 𝒂 𝑰 … … … … … … … … … … … … … … . . … … (𝟐) 

 
In Equation 2, we need to understand the rate 

of change of I over time t and that this will increase 
as people move from susceptible to infective so 
that now we have (R, I, S). Hence the term is the 
same as we had for the first equation for the change 
rate of susceptibles but now it is an addition 
because some susceptibles become infected and 
we also have, under Assumption 3, a situation 
where infectives recover or die at a constant rate. 
Thus if someone is an infective, then he/she moves 
into the third category of recovered (R) or the 
removed category (death). Here we have minus this 
constant rate which we are going to equal (a) times 
the number of infectives (I), and that just leaves the 
final equation below, which is to say that the rate of 
change of those removed in the population in 
Equation 3 must be equal to the gains (aI) in 
Equation 2: 
𝒅(𝑹)

𝒅(𝒕)
= 𝒂 𝑰 … … … … … … … … … … … … … … … … . (𝟑) 

As individuals are removed from the infective 
class in Equation 2, they move into the recovered 
(or died) category of Equation 3, and we now have 
three differential equations for three groups of 

individuals within the total population. We are 
familiar with these equations and we need some 
initial data before we can solve the system of 
equations. The way we do this is that we define the 
initial number of susceptible people in the 
population and say that this is going to be equal to 
S = 𝐒0               (initially). 

Then we say that the initial number of infectives 
will also be specified; we call this (I), and at the very 
start of the outbreak we do not expect there to be 
anybody in this removed section: hence  
I = 𝐈0               (initially) 

Because none of the individuals has yet 
recovered (or died) from the outbreak, the value of 
(R) is considered to be zero (0): 
𝐑 = 𝟎 

Now we have yet to discuss Assumption 1 in the 
context of our model in the context of our 
equations. If we return to our model, this says that 
the population must stay invariable during the 
pandemic, which in fact means that the rate of 
change of (susceptibles + infectives + removed) 
combined must be zero, because our total target 
population is given by these three factors (S+I+R): 
𝒅(𝒔)

𝒅(𝒕)
=  − 𝑹 𝑰 𝑺 +

𝒅(𝑰)

𝒅(𝒕)
= 𝑹 𝑰 𝑺 − 𝒂 𝑰 +

𝒅(𝑹)

𝒅(𝒕)
= 𝒂 𝑰 = 𝟎 

𝒅

𝒅𝒕
(𝑺 + 𝑰 + 𝑹) = 𝟎  

Now, going one step further with this first  
 
assumption, we can solve this equation because we 
already know the first conditions for the 
population. If the total population does not change 
with respect to time, that says that it is the original 
constant number for all possible values over time. 
Hence we just take the initial value to be a starting 
point, which is the value of the population at the 
beginning. But then, as time passes, this cannot 
change, because we assume that it has a constant 
value for the pandemic period. Thus it is always 
equal to that initial value now that we have formed 
our differential equations that together make up 
the SIR model. 

In the following section, we need to answer our 
set of questions. 
 
How to calculate COVID-19’s further spread?  

Let us consider our initial value of the infected 
population given by I = I0 at the start of the 
pandemic and we wish to investigate how it will 
grow, because, if the number of infective people 
starts to grow, then we have a spread of the disease 
through a population. Therefore we are interested 
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to calculate the change in infective numbers over 
time, as given below: 
𝒅(𝑰)

𝒅(𝒕)
= 𝑹 𝑰 𝑺 − 𝒂 𝑰 = 𝟎 

But before we do that, we in fact want to start 

with the 
𝒅(𝒔)

𝒅(𝒕)
 issue, because this indicates that the 

changing rate of number of susceptibles is equal to 
a negative value −𝑅 𝐼 𝑆, because (R) is some 
positive constant and (I) is a number of infected 
population as well as of (S). All of these three are 
positive and the rate of change of (S) is always 
negative, which tells us that (S) must always be 
smaller than its initial value and this of course 
makes complete sense in the context of a disease, 
because at the beginning of the outbreak everyone 
in the population in theory is susceptible to the 
disease, especially with something new like COVID-
19 that is unprecedented. Hence susceptibles (S) 
always decline because their change rate is 
negative, which tells us that (S) must be less than or 
equal to its initial value (So): 
S≤ So. 

Therefore, we can take this value (S0) and insert 
it into our equation: 

𝒅(𝑰)

𝒅(𝒕)
= 𝑹 𝑰 𝑺 − 𝒂 𝑰 

Now we have an inequality in our rate of change 
for the number of infected and we can say that an 
epidemic will occur if the size of (I) increases from 
the initial value of (I0). 

Hence, to answer our Q1 (will the COVID-19  
 
pandemic spread?), this just comes down to the 
sign of this constant (r S0 -a): if this constant is 
positive, then there will be a spread of the disease 
(COVID-19): 
𝒅𝑰

𝒅𝒙
   <   𝐈 (𝐫𝐒𝟎 −  𝐚) 

This means that if S0 is greater than 
𝑎

𝑟
, then the 

disease will indeed spread, so the equation can be 
written as follows: 
𝒅𝑰

𝒅𝒙
 <  𝐈(𝐫𝐒𝟎  −  𝐚) 𝐒𝟎  >   

𝒂

𝒓
 

This ratio 
𝑎

𝑟
 is a little easier to consider if we 

reverse it and consider what we call Q, where Q is 
equal to 𝑅/a and is called the contact ratio: 

𝑸 =
𝑹

𝒂
 

This is the proportion of the population that 
meets an infected person during the outbreak 
period and causes an increase in the infection of 
others. We can rearrange this inequality to get a 
slightly new version of the same condition for 
expecting whether or not an epidemic will occur. 

If we multiply it by (R) and then divide by (a), this 

gives us a new parameter as shown below: 

𝑹𝐨 =
𝐫 𝐒𝐨

𝐚
 

This is called the basic reproductive value and 
this condition indicates that we will have an 
epidemic if this ratio is greater than 1, as shown 
below: 

𝑹𝐨 =
𝐫𝐒𝐨

𝐚
> 1 

In this equation, the number Ro (or the basic 
reproductive ratio) is something that we may have 
heard about during the prevalence of COVID-19. 
This number represents the number of secondary 
infections in the population caused by initial 
infection. 

In other words, if one person has the infection, 
then the Ro value will tell us how many infections 
on average that person will cause to other 
community members. It also tells us how many 
other people will become infected within the target 
population. During seasonal flu, for example, the 
value of R0 is somewhere between 1.5 and 2, 
whereas for COVID-19 it is estimated to be more 
like 3 to 4. The exact numbers are obviously still 
being determined, because this is ongoing, 
unprecedented outbreak, but the number is 
certainly much higher than the 1.5 or 2 that we 
have seen for the seasonal flu in the past. This 
means that for everyone person infected with 
COVID-19, they passing it on to three to four 
people, which is why it is spreading so rapidly. 
 
 
What equation or model can tell us the maximum 
number of people who will have COVID-19 at any 
one time? 

We need to investigate the maximum number of 
infectives at any given time, because knowledge of 
such a number is very helpful when it comes to 
planning how to distribute health resources. That is 
why we want to create an equation for infectious 
group (I) that is in terms of various parameters. We 
know this from within our system of equations, and 
what we do time in fact is to combine these:  
𝒅(𝒔)

𝒅(𝒕)
=  − 𝑹 𝑰 𝑺 ,

𝒅(𝑰)

𝒅(𝒕)
= 𝑹 𝑰 𝑺 − 𝒂 𝑰 

 
We take these two equations together, because, 

if we take the differential of I w.r.t. ‘t’ 
𝒅(𝑰)

𝒅(𝒕)
 divided 

by 
𝒅(𝒔)

𝒅(𝒕)
 , we end up with an equation 

𝒅(𝑰)

𝒅(𝑺) 
. If we 

simplify this, then the two terms below are going to 
cancel perfectly, because they are exactly the same:  
𝒅(𝑰)

𝒅(𝒔)
= 𝑹 𝑰 𝑺 − 𝒂 𝑰 / −𝒓𝑰𝑺 

Hence we get a -1 term and then the second 
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term here, the (I), will cancel in both terms: 
𝒅(𝑰)

𝒅(𝒔)
=

𝑹𝑰𝑺 − 𝒂𝑰

−𝒓𝑰𝑺
= −𝟏 

Thus we get + (a) over (R) and with an (S) on the 
bottom, returning to our answer to Question 1: 
𝒅(𝑰)

𝒅(𝒔)
=

𝑹𝑰𝑺 − 𝒂𝑰

−𝒓𝑰𝑺
= −𝟏 +

𝒂

𝒓𝑺
 

For the spread of the disease we introduced this 
parameter (Q), which was equal to (R) divided by 
(a), and so if we rephrase that final term in terms of 
(Q) we have -1 + (1 divided by (Q) times (S)): 
𝒅(𝑰)

𝒅(𝒔)
=

𝑹𝑰𝑺 − 𝒂𝑰

−𝒓𝑰𝑺
= −𝟏 +

𝟏

𝒒𝑺
 

And the equation below is something that we 
can now integrate directly and solve: 
𝒅(𝑰)

𝒅(𝒔)
= −𝟏 +

𝟏

𝒒𝑺
 

Now we also of course have initial conditions 
and that is what is going to form the right-hand side 
of the equation below; hence our final equation is: 

𝐈 +  𝐒 −
𝟏

𝒒
 𝑰𝒏𝐒 = 𝐈𝐨  + 𝐒𝐨 −

𝟏

𝒒
 𝑰𝒏𝐒𝐨 

Whilst we have this equation for (I) in terms of (S) 
and the parameters of our model, we have not yet 
found (I Max), the maximum numbers of infected at 
any given time, which is what we want to know to 
answer our second question. Now that we are 
normally thinking about maximums and minimums 
of functions, we would differentiate the function, 
but fortunately we already have the derivative from 
combining Equation (1) and Equation (2). 
 

Thus we can see that this is zero (0) when (S) is 
equal to 1 or Q, because if (S) is 1 over Q we get 
minus 1 plus 1 = 0: 
𝒅(𝑰)

𝒅(𝒔)
= −𝟏 +

𝟏

𝒒𝑺
= 𝟎 

So the maximum value of (I Max ) is in fact in the 
following equation: 

𝐈 +  𝐒 −
𝟏

𝒒
𝑰𝒏𝐒 = 𝐈𝐨  + 𝐒𝐨 −

𝟏

𝒒
𝑰𝒏𝐒𝐨 

When (S) is equal to 1 over Q, substituting this 
value into our equation and rearranging for (I), we 
get the value of (I Max ), so that below is our final 
expression for (I Max ): 

(𝐈 𝐌𝐚𝐱 ) =  𝐈𝐨  + 𝐒𝐨 −
𝟏

𝒒
(𝟏 + 𝑰𝒏 (𝒒𝐒𝐨) 

And by writing it this way, we can say specify the 
maximum number of infectives, so that the answer 
to the question that we are interested in is that the 
maximum number of people who will have the 
disease at a given time is equal to the total target 
population. Hence, to begin it amounts to 
everybody, but then we take away something in the 
value given in the following equation (represented 
in the box), which turns out to be positive:  

(𝐈 𝐌𝐚𝐱 ) =  𝐈𝐨  + 𝐒𝐨 −
𝟏

𝒒
(𝟏 + 𝑰𝒏 (𝒒𝐒𝐨) 

Parameter Q is the contact ratio and S0 is the 
total population for a disease like COIVD-19. An 
outbreak like COVID-19 has happened for the first 
time and the whole population is considered to be 
susceptible to COVID-19. Initially, S0 is some very 
large, fixed number, but the interesting thing here 
is what happens as (Q) varies. If we consider this as 
a function f(x): 
                                                       f(x) 

(I 𝐌𝐚𝐱 ) =  𝐈𝐨  +  𝐒𝐨 −
1

𝑞
(1 + 𝐼𝑛(𝑞𝐒𝐨) 

We want to plot 1 over x times 1 plus log of x 
times some constant value 𝐒𝐨, and below what this 
is going to look like is as follows: so (f) of (x) and (x), 
we have 1 over (X) 1 plus log, and thus we have this 
increase, initially, and then the function starts to do 
something like the graph below and this peaks at  
 
around 𝐒𝐨 . 

The important factor here is the measure of Q, 
which is the contact ratio and the fraction of 
population that comes into contact with an infected 
individual. Therefore, in the current COVID-19 
outbreak, this value of Q is indeed very high, 
because the disease is very easy to transmit with 
the result that many people become infected. 
Finally, for our model, this means that the contact 
ratio Q is high for COVID-19. Looking at our graph, 
if Q is large or X on our graph, then F(x) is actually 
very small, so we are down at the far end of the 
graph and the value of (F) is indeed very small.  
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What this means for our maximum number of 
infective is 
                                                      f(x) 

(𝐈 𝐌𝐚𝐱 ) =  𝐈𝐨  + 𝐒𝐨 −
𝟏

𝒒
(𝟏 + 𝑰𝒏(𝒒𝐒𝐨) 

F(x) is the maximum number of people infected 
at any given time and is equal to the total 
susceptible population minus this function, where 
our function in fact is now quite small. Therefore, 
this is an alarming situation for an outbreak that has 
a large Q value such as with COVID-19. This means 
that the maximum number of people will become 
infected.  

 
How to devise and interpret an equation for how 
many people will be affected by the COVID-19? 

To answer this question we need to return to 
Assumption 1: that the total population in a 
particular country or region is considered constant. 
First, we must consider what it means for the end 
of this disease, because if we want to know the total 
number of people infected with the disease, we 
need to end the spread of the disease, which means 
that the number of infectious diseases must be 
reduced to zero. So, if we call this point in the future 
just the end of the outbreak, then what we can do 
is to look at our total (susceptibles, infectives and 
recovered) population equation as follows: 
𝑺 + 𝑰 + 𝑹 =  𝐈𝐨  +  𝐒𝐨 

 
Rearrange to find the size of R and the removed 

component at the very end of the outbreak, 
because the number of people who have either 
caught the disease or died of the disease (i.e., all the 
people shifted to  removed section or R component 
of the model) will in fact then give the total number 
of individuals who were infected. What we can do 
is now to rewrite this equation for what it looks like 
at the end of the epidemic and this can be 
presented as follows: 
𝐑 (𝐞𝐧𝐝)  =  − 𝐒 (𝐞𝐧𝐝))  +  𝐈𝐨  +  𝐒𝐨  

Thus we have the total population 𝐈𝐨  +  𝐒𝐨 
minus the number of susceptible people left at the 

end of the epidemic. To find the value of (S (end)) 
what we do is in fact return to our equation from 

Q2, the one that came from integrating  
𝒅(𝑰)

𝒅(𝑺)
 and 

now we allow time to progress to the end of the 
epidemic: 

𝐈 +  𝐒 −
𝟏

𝒒
𝑰𝒏𝐒 = 𝐈𝐨  + 𝐒𝐨 −

𝟏

𝒒
𝑰𝒏𝐒𝐨 

Hence we solve the equation below to get the 
value of the susceptibles left at the end of the 
pandemic 𝐒 (𝐞𝐧𝐝):  

𝐒 (𝐞𝐧𝐝) −
𝟏

𝒒
𝑰𝒏𝐒(𝐞𝐧𝐝) = 𝐈𝐨  +  𝐒𝐨 −

𝟏

𝒒
𝑰𝒏𝐒𝐨 

And then we replace the value into the equation 
below to get the number of removed people: 
𝐑 (𝐞𝐧𝐝)  =  − 𝐒 (𝐞𝐧𝐝) +  𝐈𝐨  +  𝐒𝐨 

This is the number of the removed/recovered 
population at the end of the pandemic and this is 
exactly the answer to our third question as to how 
many people were infected during the pandemic. 
Now we are going to consider the graph of this 
function, so that if we plot (S (end) ) in place of (S0 ) 
as the (Y-axis) value in the graph below, and then to 
the (X-axis), we are going to put (Q), our contact 
ratio, because as we saw in Q2 the maximum: 
 

The number of infectives was key to controlling 
the behavior of the disease outbreak, and so in the 
graph above we replace X by Q, so that what we are 
plotting in fact is Y minus 1 over X times the log of Y 
which is equal to a load of constant values minus 1 
over X times (again) some other constant. This looks 
approximately like the following:  
 

It comes through (S (end) ) and then flattens at the 

(Q).,  
 
Thinking again about the context of the ongoing 

COVID-19 pandemic, we explain that in Q2 the 
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value of Q is the contact ratio which is very high, 
and so for a large value of Q this is going to have a 
very small value of (S(end) ). This is indeed going to 
be quite small and that is bad news once again in 
terms of answering our question, because (R (end) ): 
the total number of people who catch the disease, 
remember, is equal to the total population 𝐈𝐨  +  𝐒𝐨 
and then subtracting of this (S (end) ) but for a large 
value of Q, (S (end) ) is small and we are not really 
subtracting much from the total population, 

In summary, the vast majority of the population 
will catch the disease if the value of Q is sufficiently 
large. 
 
SIR Model and Discussion for COVID-19 

The contact ratio Q is really key to determining 
this behavior and we can see this very clearly in the 
three answers to our important questions about 
this disease spread. 
Q1: Spread  𝑹𝐨 = 𝐪𝐒𝐨 > 1  
Q2: 𝐈𝐦𝐚𝐱 =  𝐓𝐨𝐭𝐚𝐥 𝐩𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 –  𝐟(𝐪) 
Q3: 𝐓𝐨𝐭𝐚𝐥 =  𝐭𝐨𝐭𝐚𝐥 𝐩𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐠(𝐪) 

Here we see that if Q is large, then first of all the 
disease spread translates into a pandemic1. 
Question 2 tells us that the maximum number of 
infectives at a given time is equal to everybody 
minus this function of Q and we saw that the 
function of Q was actually small for a large value of 
Q. So, in the case of COVID-19, the maximum 
number of infectives at any given time is almost 
equal to the whole population. Then for Question 3, 
we are interested to investigate how many people 
will catch the disease again. Q is the contact ratio 
and so this tells us that basically again most of the 
population or the vast majority will catch the 
disease for a large value of Q. Now of course we all 
know that there is a pandemic and that most people  
 
become infected, but this model tells us the extent, 
and we should stress that this is one of the most 
basic disease models. These mathematical models 
not only tell what may seem obvious, they also tell 
us how to alter and control events. This can guide 
us to bringing the situation under control and in our 
favor. Here what we can see from our simple model 
is the importance of the contact ratio Q: it appears 
in the answers to all three of our key questions, so 
that, while we cannot stop the spread anymore, 
because that has already happened, what we can 
do is to look at Q2 and Q3, because we can see that, 
if we want to reduce the number of people that 
have the disease at a given time ( Imax ), then what 
we need to do is to make the value of (F) as small as 

                                                             
1 It is a little late to say this now, because COVID-19 is already a 
pandemic! 

possible, and we saw earlier on our graph that this 
happened when Q was small and, similarly for Q3, 
for the total number of people catching the disease 
we want to make (G) of (Q) as large as possible, so 
that the total number of people becomes much 
smaller – and again that happened for a smaller 
value of Q. 

What we can do is reduce the value of Q, the 
contact ratio, and the fraction of the susceptible 
population that meets an infective person. This is 
why currently medical advice is that we  wash our 
hands frequently to avoid infection. Similarly, social 
distancing is a new measure to keep away from 
people, because if we stay away from other people 
we are reducing the probability of coming into 
contact with somebody who has the infection and 
this reduces the value of Q. 

We need to do everything we can to reduce the 
value of Q and all the current measures are telling 
us to do exactly that. These measures ultimately 
need to lower the value of Q, because the SIR model 
indicates that the lower the value of Q, the fewer 
people who catch the disease. 
 
Conclusion 

Mathematical modelling is a a pillar of science, 
with applications ranging from mathematical 
sciences to biological and social sciences. 
Mathematical and statistical modeling has become 
an essential technique in helping us to improve our 
understanding of disease transmission and 
forecasting of infectious communicable and non-
communicable diseases. 

This study explains the basis of the SIR model 
and how we can forecast and initiate measures to 
control COVID-19. The SIR model is based on 
differential equations using three terms, 
Susceptibles (S), Infectious (I) and Recovered (R). 
This study focuses on answering three question 
about the possible peak of COVID-19 and how to  
 
reduce the spread by examining it mathematically 
in the SIR model equation. 
 
Limitation 

This study is limited only to the use of SIR model 
as forecasting technique for COVID-19. However, 
we did not estimate forecasting for any country or 
region during COVID-19 pandemic. In future 
studies, using the SIR model we can forecast the 
expected number of suspected and confirm cases 
for a particular period of time.  
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