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Abstract 
Gait irregularities frequently result from orthopaedic or neurological diseases, and they can 
have serious repercussions including limiting movement and falling. Gait analysis is essential 
for tracking gait irregularities, and identifying underlying impairments can aid in creating 
treatment plans. Spatio-temporal, kinematic, and muscle activation gait features must all 
be examined in today's multi-modal gait analysis. The second most prevalent 
neurodegenerative ailment, PD (Parkinson's disease), is brought on by the midbrain's 
premature neuronal loss. The absence of valid neuropathological criteria prevents a firm 
pathological diagnosis of PD. To classify PD severity, DLTs (deep learning techniques) are 
utilised to analyse and combine raw data of gait-induced GRFs (ground reaction force) for 
PD diseased and healthy patients. The current LSTM model also requires a lot of training 
time and is very sensitive to random weight initialization. For the effective operation and 
reliable prediction of PD data, this study introduces an efficient feature selection and hybrid 
CNNs (Convolution Neural Networks) with LSTM (Long Short Term Memory). In the 
beginning, processing is done to remove noisy data. Then, to evaluate the results of the 
models and reveal which elements in the spatiotemporal gait GRFs signals are most 
important for the models' predictions, feature selection is carried out via LRPs (Layer-wise 
relevance propagations). This enables their assignment to gait events, suggesting that heel 
strikes and body balances are best suggestive gait aspects for the categorization of healthy 
gait. Landing of the foot and body balances are the most affected during late stages of PD. 
Finally, Hybrid CNNs with LSTM for the reliable prediction of PD data and efficient operation. 
The suggested models can be helpful for identifying changes in postural balance and grading 
PD severities since they are robust towards noises and process/ classify big datasets 
efficiently. 
Keywords: Sensor applications, Parkinson's Disease, gait characteristics, Layer-wise 
relevance propagation (LRP), Hybrid Convolutinal Neural Network (CNNs ) with Long Short 
Term Memory (LSTM). 

 
1. Introduction 

Humans walk in a way known as gait, which is 
caused by the centre of gravity of the body moving 
forward in two phases. Gaits are actions of lower 
limbs that result in co-ordinated and recurrent 
foot’s contacts with surfaces (Pardoel et al., 2019) 
Gait analyses are hot research areas for a variety of 
activities and applications including biometrics, 
sports, and healthcare. Clinical manifestations of 
PDs including bradykinesia, rigidities, decreased 
amplitudes and reduced automaticity of 
movements impact gait patterns of PD patients.  
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Along with reductions in gait speeds and step 
lengths, patients also exhibit increased axial 
stiffness and rhythmicity impairments (Abou et al., 
2021). Gait issues are a key illness burden that 
significantly reduces independence and quality of 
life as the disease develops (panel). Dopaminergic 
medications enhance certain aspects of walking 
including step lengths and speeds, but have 
reduced impacts on reactions to temporal traits and 
episodic symptoms like freezing of gaits, which is 
abrupt inabilities in walking continuously. The 
majority of cross-sectional research used to study 
gait deficits in PD  patients do not offer insights into 
specific gait modifications linked to disease 
progression (Mirelman et al., 2019). The use of gait 
measurements as feasible endpoints for 
determining disease’s progressions and their cure  
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are constrained by the rare use of quantitative gait 
evaluations (e.g., speeds and variability) in regular 
clinical examinations and lack of knowledge of the 
underlying processes. 

The evaluation, understanding of processes, and 
treatment of gait deficits in PD  patients have all 
benefited from advancements in wearable 
technology and imaging methods (Pardoel et al., 
2021). The complicated camera-based motion-
capture systems are being quickly replaced by low-
cost sensor technologies, such as accelerometers 
and gyroscopes, which enable doctors to assess gait 
quantitatively in clinics and even for normal home 
or community based activities. These assessments 
offer insightful data on motor fluctuations, habitual 
function, and pharmaceutical response (Balaji et al., 
2021). Understanding the processes driving 
patientrs affected with PD in terms of gait patterns 
has improved mainly due to neuro-images that 
capture brain activities during walking resulting in 
developments of potent treatment therapies. One 
of the major effects of PD is a deviation from a 
healthy strides and in later stages, it increases the 
chance of falling. The measurement of visual gait, 
however, may yield conflicting results in PD’s early 
stages. This is mostly because the sluggish walking 
and short stride may also be caused by old age, 
depression, or other diseases. This is supported by 
the fact that PD results in tremor, muscular rigidity, 
and sluggish movement (Torvi, Bhattacharya, & 
Chakraborty, 2018). The gait cycle (see Fig. 1) is 
regularly observed visually in medical settings to 
check for gait abnormalities, which serves as the 
foundation for the diagnosis of PD and the 
assessment of the disease's severity. These 
techniques are therefore semi-subjective. 

 
Figure 1 shows significant gait events and breaks 

in a normal gait cycle. 

 
|Signals emanating from VGRFs (vertical ground 

reaction forces) were investigated as novel gait 
assessments for determining severity of PD in 
addition to binary classifications from normal gaits 
based on the dual-modal DLTs (Zhao et al., 2014). 
High accuracies were obtained in distinguishing 
patients with PD, normal, and other 
neurodegenerative disorders based on a 
combination of methods utilised including k-NNs (K-
nearest neighbours), DTs (decision trees), RFs 
(random forests), NBs (Naïve Bayes), SVMs (support 
vector machines), K-means, and Gaussian mixtures. 
Gait categorizations of patients with PD were based 
on basic, kinematic, and kinetic parameters in 
statistical analyses which were executed using 
ANNs (Artificial Neural Networks). According to the 
findings, walking speed, knee angle, step length, 
and VGRFs were the most obvious traits. In a follow-
up study, gait dynamics are used to predict PD using 
multichannel tensor decomposition (Nguyen et al., 
2017). Contrarily, the average walking speed of a 
human is 1.4 m/s.. However, older people typically 
walk more slowly to increase their dynamic 
stability. The slower stride that comes with ageing 
causes more gait variance, which raises the risk of 
falling. Due to the degradation of neurons and the 
diminished capacity to regulate the locomotor and 
muscular systems, this is a notable trait in PD 
patients. Walking more slowly might reduce the 
metabolic energy expenditures connected to aging-
related anaerobic capability. Age times speed in 
terms of trunk roll angle is a key indicator of the gait 
variability that may occur in healthy, typical ageing 
adults. Elderlies also have low foot clearance (Yang 
et al., 2014). The COP variation beneath the foot 
could represent this. Undoubtedly, PD has a gait 
disorder characterised by postural instability, 
delayed walking, as well as shuffles and problems 
commencing steps. 

By utilising automatic feature extractions on 
raw sensor data, arbitrary characteristics were 
eliminated by DANNs (Deep ANNs) (Naghavi, 
Miller, & Wade, 2019). The investigations of PD 
affected gaits using DLTs like LSTM (Demrozi et 
al., 2019) demonstrate  that these methods 
generate techniques for analysing gait data that 
are extremely important. Fundamental DANNs, 
however, allow clear relationships back to input 
data properties for models to arrive at certain 
conclusions. They also limit model’s predictions 
due to the model's opacity which makes it more 
challenging. They also add complexity to 
process classifications into groups, thus 
preventing systematic advancements of gait 
characterisations.  
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The current LSTM model also requires a lot of 

training time and is very sensitive to random weight 
initialization. To help, this study introduces an 
effective feature selection method and hybrid CNNs 
with LSTM for the reliable prediction of PD data. 

Section 2 of the remaining research is devoted 
to a review of current gait traits-based Parkinson 
disease prediction. Section 3 outlines the 
methodology's recommended approach. The 
findings and discussion are presented in section 4. 
Section 5 covers the conclusion and further 
research. 
 
2. Literature Review 

The evaluation, processes, and therapies to 
enhance gait are three linked elements of gait 
abnormalities in PD patients that are evaluated in 
this section. The review identifies knowledge gaps 
and offers perspectives that might result in fresh 
insights and innovations to enhance clinical 
judgments and treatments. 

In order to assess gait data, El Maachi, Bilodeau, 
and Bouachir (2020) suggested an unique 
intelligent Parkinson diagnosis method based on 
deep learning approaches. In order to create a DNN 
(Deep Neural Network) classifier, they employed 1D 
CNNs (1D-Convnets). Eighteen 1D data from foot 
sensors detecting VGRFs are processed using the 
suggested model. The network's initial section is 
made up of 18 parallel 1D-Convnets that correlate 
to system inputs. The outputs of the 1D Convnets 
are concatenated in the second component, which 
is a fully connected network, to provide final 
classifications. Additionally, this algorithm was 
evaluated using the UPDRS (Unified PD Rating 
Scale) to diagnose Parkinson's condition and 
forecast the severity of the disease. Their tests 
showed that the suggested strategy for detecting 
Parkinson disease using gait data works quite 
effectively. The suggested method had a 98.7% 
accuracy rate. also managed to predict the severity 
of PD with an accuracy of 85.3%. Unsupervised 
approaches were substituted by feature learning 
techniques based on PCA (principal component 
analysis)  and time based statistics by Mazilu et al. 
(2013) in their study. The study found that the latter 
routinely outperformed the former in terms of F1 
measures for FoG (Freezing of gait) detections, 
Freezing Indices by 8.1%. Investigations of pre-FoG 
patterns, or patterns that appear before FoG 
occurrences could be advanced in contrast to the 
use of EEG, the sole method that was used. By 
reaching F1 measures of 56% in pre-FoG class for 
patients who revealed adequate gait degenerations 
prior to FoG, the study showed that FoG prediction  

 
ability was patient dependent, relating to "three-
class" issues (FoG vs. pre-FoG vs. normal 
locomotion). Vidya and Sasikumar (2021) 
introduced gait classifications based on MCSVM 
(multi-class SVM) decision support systems as gait 
changes are initial PD symptoms. The study used 
VGRF dataset for kinematic analyses and extracted 
spatiotemporal properties. Important gait 
biomarkers were uncovered in this work as it used 
correlation based feature selections along with 
multi-regressions to normalize gait time series data 
values. By breaking the multi-class classification 
problem into multiple binary classification issues 
using 1-1 method, the proposed PD severity 
evaluation methodology additionally assessed 
performances of four SVM kernel functions using 
three different walking tests. According to 
experimental findings, the quadratic SVM classifier 
performs better than previous cutting-edge 
techniques that used gait datasets for PD diagnosis, 
with an average accuracy of 98.65%. 

Using the AnyBody modelling framework, 
Eltoukhy et al. (2017) created a Kinect-driven 
musculoskeletal model to forecast three-
dimensional GRFs during walking in PD patients. 
Nine PD patients underwent ground walking trials 
where kinematics and GRFs (ground reaction 
forces) were measured using Kinect v2 and force 
plates. Peak vertical and horizontal ground reaction 
forces and impulses generated throughout the 
braking and propulsive stages of gait cycles were 
assessed. To test if Kinect sensors could predict 
GRFs precisely and consistently throughout gait 
cycles, 3-D ensemble curves of GRFs with 
associated 90% confidence intervals (CI90) were 
compared. The results showed that Kinect v2 
sensors were viable clinical assessment tools for 
predicting GRFs produced by movements in people 
with PD. Using MLTs (machine learning techniques), 
Borzì et al. (2021) suggested a wearable system that 
can identify the usual worsening of the walking 
pattern that occurs before FOG episodes and 
determine whether dopaminergic medication 
impacts the system's capacity to detect and 
forecast FOG. 11 PD patients were divided into two 
groups: those getting dopaminergic treatment (on) 
and those not receiving it (off). Both groups were 
given two inertial sensors, one on each shin, and 
instructed to complete a timed up and go test. and 
carried out an iterative process of segmenting the 
angular velocity data, followed by feature 
extractions of both time and frequencies. To 
identify FOG and pre-FOG events, they used a 
wrapper technique for feature selection and 
improved several MLTs. With patients both on and  
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off treatment, the built FOG detection algorithm 
demonstrated good performance in a leave-one-
subject-out validation. In terms of pre-FOG 
identification, the developed classification 
algorithm in patients receiving (not receiving) 
treatment obtained 84.1% (85.5%) sensitivity, 
85.9% (86.3%) specificity, and 85.5% (86.1%) 
accuracy. A unique CNN-based deep FOG detection 
technique was presented by Xia et al. (2018) where 
data segments from 1 dimensional  acceleration 
signals were inputs. CNNs effectively achieved 
automated feature learning and detections of FOG 
occurrences from routine walks and eliminated the 
need for hand crafted feature extractions or time 
consuming feature selections. The study used a 
dataset encompassing eight hours lab data of ten 
PD patients who frequently experience FOG. Their 
system's classification accuracy in a patient 
dependent contexts exceeded 99% while 80.70% in 
patient-independent situations. Without GPUs 
(graphics processing units) accelerations, the 
method took only 3.6 ms to classify 4s data 
segments. Camps et al. (2017) proposed FOG 
detections based on DL|Ts and signal processing 
methods and it was the first application of DLTs in 
detections of FOG. The study used information 
from 15 PD patients who showed FOG for their 
proposed model's assessments. Triaxial 
accelerometer, gyroscope, and magnetometer 
signals were captured by an inertial measuring 
device mounted on the left side of the waist. The 
method attained validation performances of 88.6% 
and 78% for sensitivity and specificity, respectively 
and equivalent to current standards. 

VGFR Spectrogram Detector and Voice Impairment 
Classifiers were two neural network based models 
proposed by Johri and Tripathi (2019) for early sickness 
identifications in healthcare. DANNs predicted 
sicknesses based on voice recordings and large scale 
image classifications of gait signals which were 
converted to spectrogram images. Their experimental 
results demonstrated that their proposed model 
outperformed most methods in terms of accuracy. The 
classification accuracy of their VGFR Spectrogram 
Detector was 88.1%, while Voice Impairment Classifier 
scored 89.15% in accuracy of detecting PDs. Intelligent 
categorizations were proposed by Celik and Omurca 
(2019) where RFs, Extra Trees, Gradient Boosting, SVMs 
and LRs (Logistic Regressions) were examined. They 
used a total of 1208 speech data sets comprising of 26 
features gathered from PD patients and non-patients 
for classifications. Feature spaces of datasets were 
widened through correlation maps where 
characteristics were gathered using PCA, IG 
(Information Gain). The classification results obtained  

 
with extended features are superior than those 
obtained with the data's original features, it is found. 

A model based on MLTs was created by Dash (2021) 
utilising the five classifiers RFs, , LRs (Logistic 
Regressions), XGBoost, AdaBoost, and Gradient Tree 
Boosting to predict PD where Gradient Tree Boosting 
had the most impressive accuracy (98.31%) with ROC 
curve of 98.66%. The study demonstrated that the 
stated design is more accurate than the existing 
techniques described in the literature and that its 
occurrence rate is lower. In order to rate the severity of 
PD using gait pattern, Balaji et al. (2021) introduced a 
unique deep learning architecture based LSTM 
network. Unlike MLTs, the LSTM network learns the 
long-term temporal relationships in the gait cycle 
without the requirement for manually created features 
for robust diagnosis of PD. By substituting memory 
blocks for self-connected hidden units, the LSTM 
network resolves the vanishing gradient problem and 
can thus decide when to acquire new information. For 
training the LSTM network, three separate gait datasets 
with VGRF recordings for various walking situations are 
employed. The suggested method makes use of 
dropout and L2 regularisation techniques to prevent 
data overfitting. H&Y (Hoehn and Yahr) and UPDRS 
(universal PD rating scale) categorized severity levels of 
PD patients. Adam, a stochastic gradient-based 
optimizer solved cost functions where experimental 
results showed that Adam-optimized LSTM networks 
could effectively learn gait kinematic parameters and 
offer binary classification accuracies of 98.6% and 
96.6% accuracy for multi-class classifications, thus 
improving accuracy ranges by 3.4% when compared 
with other relevant approaches. 
 
3. Proposed Methodology 

Introduce an effective feature selection method 
and hybrid CNNs with LSTM in this part for the 
reliable prediction of PD data. And figure 2 shows 
the suggested model's workflow in action. The 
input layer of the HCNN-LSTM receives the pre-
processed, segmented signals of VGRFs. Gait cycle 
has important spatiotemporal characteristics that 
can distinguish between healthy people and people 
with PD. Processes first eliminated noisy data 
followed by the use of  LRPs to analyse model 
outputs and reveal crucial spatiotemporal gait GRF 
signals for predictions. The study indicated that 
body balances and foot landing were important gait 
characteristics of patients in late stages of PD, 
whereas heel strikes and body balances were the 
most indicative gait aspects for classifications of 
healthy gaits. Finally, Hybrid CNNs with LSTM for 
the reliable prediction of PD data and efficient 
operation. 

27 Swathika R, Radha N 



                                             REVISTA ARGENTINA 
                                                                          2022, Vol. XXXI, N°1, 24-35      DE CLÍNICA PSICOLÓGICA 

 

 
Figure 2. The overall process of the proposed HCNN-LSTM model based detection of PD 

 
3.1. Preprocessing using Z-Score normalizations 

Data preparations are processes of converting 
raw data into understandable formats and it is 
pertinent to assess data's quality before using MLTs 
or other data mining techniques for processing 
data. This phase is essential as quantity and calibre 
of accuracy are important to data and the findings 
were found to be more pertinent when both 
amount and quality of images were good. The 
dataset in this study was normalised using Z-score 
approaches. The result section includes a detailed 
description of the dataset. 
 

• Z-Score Normalizations 
The average intensity for each individual dataset 

was first calculated for each experiment's raw 
intensity data, and then the average of the averages 
was calculated (Patro & Sahu, 2015). The 
computation of the normalisation factors, which 
were then applied to each experiment, was based 
on this grand average. The overall average was the 
same for all subsequent normalised data averages. 

Z-scores can be plotted on normal distribution 
curves in the range of -3 and +3 for standard 
deviations (σ), or at extreme lefts and rights of 
normal distribution curves. 

Concretely, let xi (i = 1, 2, · · · , D) denote the i-th 
component of each feature vector x ∈ R D. We first 
compute the mean and the standard deviation of 
these D components: 

𝜇𝑥 =
1

𝐷
∑ 𝑥𝑖 , 𝜎𝑥 = √

1

𝐷

𝐷
𝑖=1 ∑ (𝑥𝑖 − 𝜇𝑥)2𝐷

𝑖=1                (1) 

Z-score normalization is then applied as 

𝑥(𝑧𝑛) = 𝑍𝑁(𝑥) =
𝑥−𝜇𝑥1

𝜎𝑥
                                            (2) 

According to these computations, the 
original feature vectors are first projected 
along the 1 vector to a hyperplane that 
encompasses the origin and is perpendicular to 
√ 1. The resultant normalised vectors are then 
scaled to have the same length as D, such that 
they lie on a hypersphere of radius √ D. The 
method of feature selection is carried out after 
preprocessing the provided data, as explained 
in the section below. 
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3.2. Feature Selections 

The most used artificial intelligence approach 
for gait analysis is supervised learning, by far. Such 
MLTs use supervised mapping of ground truth input 
data to an output label to train a network in order 
to identify the gait pattern. The actual designation 
in this case is either healthy or PD. The models pick 
up on the various gait degradation phases during 
this process. 
 

• LRPs 
LRPs are backward propagation techniques that 

show which ANN input vector segments are most 
important for model prediction. In this study, we 
measure the contribution of a single input xi 
component (in our example, a sensor signal at a 
particular time frame) to the prediction of f𝑐(x) ( c) 
signify a class of PD severities rating, based on gaits). 
Through back propagations, intermediate nodes 
obtain fresh copies of predicted PD severity rating up 
to input layers (Binder et al., 2016). LRPs highlight 
signal segments that contribute most to model’s 
predictions like for example data segments with most 
variability create "heat maps" over original signals. 
Neural networks encompass several layers of neurons 
(feature maps in the case of a convolution layer) and 
where neurons are activated using: 

𝑎𝑗
1+𝑙 = 𝜎(∑ 𝑎𝑖

𝑙
𝑖 𝜔𝑖𝑗

(𝑙,𝑙+1)
) + 𝑏𝑗

(𝑙+1)
                            (3) 

Here, 𝑎𝑖
𝑙 denote the activation of a neuron i in 

the previous layer in forward direction; 𝜔𝑖𝑗
(𝑙,𝑙+1)

 

denote the weight received in forward direction by 

neuron i from neuron j in the previous layer; 𝑎𝑖
𝑙 

𝜔𝑖𝑗
(𝑙,𝑙+1)

denote the contribution of neuron i in layer 

l to the activation of the neuron j in layer l + 1. The 
sum is computed over all neurons that are 
connected to neuron j. The function 𝜎 is a nonlinear 
monotonously increasing activation function, a 

rectified linear unit ‘ReLU (max(0,x)’) and 𝑏𝑗
(𝑙+1)

 is a 

bias term. The DCNN picks up these biases, weights, 
and activations during supervisory training. The 

parameters (𝜔𝑖𝑗
(𝑙,𝑙+1)

+ 𝑏𝑗
(𝑙+1)

) are updated via 

back-propagating during training utilising model 
error for the latter and calculations on categorical 
cross entropy. 

The LRPs approach decomposes the DCNN 
output for a given prediction function of gait class c 
as 𝑓𝑐 for input 𝑥𝑖 and generates a “relevance score” 

𝑅𝑖
𝑙   for ith neuron of layer l and 𝑅𝑗

𝑙+1  from the jth 

neuron in the previous layer, where the relevance 
conservation principle is satisfied as: 
∑ 𝑅𝑖←𝑗 =𝑖 ∑ 𝑅𝑗 =𝑖 𝑓𝑐(𝑥)                                            (4) 

LRPs start at DCNN’s output layers after Softmax 
layers are removed. This technique eliminates  

 
other classes and uses gait classes C as inputs to 
LRPs (healthy gaits or one of the three PD severity 
ratings). The back propagations necessary to un-
pool pooling layers needs to be computed by 
sending signals to neurons for which activations are 
computed in forward passes. When average-
pooling is used, the neuron with the average 
activation value is taken into account. 

As generalisation, have a look at output neuron 
I in one of the model layers. From a neuron j in the 
higher layer, which represents the model's output, 
it receives a relevance score Rj (class c). The 
activation function of neuron j, which is created in 
the forward pass and updated by back-propagating 
during training, is used to redistribute the scores 
among the connected neurons throughout the 
network layers based on the contribution of the 
input signals xi. The latter will retain a certain 
relevance score and communicate its value to 
following neurons in the opposite direction based 
on its activation function. After that, the system 
calculates relevance scores for each sensor signal 
during a certain time period. High relevance scores 
for particular time frames emphasise the regions 
that influenced the model classifications the most 
in a heat map created from these scores. The 
following is a representation of the relevance 
propagation rule Ri for layer l: 

𝑅𝑖
𝑙 = ∑

𝑎𝑖
𝑙𝜔𝑖𝑗

(𝑙,𝑙+1)

 ∑ 𝑎𝑖
𝑙𝜔

𝑖𝑗
(𝑙,𝑙+1)

𝑗

𝑅𝑗
(𝑙+1)

𝑗                                         (5) 

There are other propagation rule such as (𝛼𝛽 −
𝑟𝑢𝑙𝑒) 

𝑅𝑖
𝑙 = ∑ (𝛼.

(𝑎𝑖
𝑙𝜔𝑖𝑗

(𝑙,𝑙+1)
)+

 ∑ (𝑎𝑖
𝑙𝜔𝑖𝑗

(𝑙,𝑙+1)
)+

𝑗

−𝛽.
(𝑎𝑖

𝑙𝜔𝑖𝑗
(𝑙,𝑙+1)

)−

∑ (𝑎𝑖
𝑙𝜔𝑖𝑗

(𝑙,𝑙+1)
)−

𝑗

𝑅𝑗
(𝑙+1)

𝑗 (6) 

where (𝑎𝑖
𝑙𝜔𝑖𝑗

(𝑙,𝑙+1)
)+ and (𝑎𝑖

𝑙𝜔𝑖𝑗
(𝑙,𝑙+1)

)− denote 

the positive and negative part of 𝑎𝑖
𝑙𝜔𝑖𝑗

(𝑙,𝑙+1)
 

respectively, such as that 

(𝑎𝑖
𝑙𝜔𝑖𝑗

(𝑙,𝑙+1)
)++(𝑎𝑖

𝑙𝜔𝑖𝑗
(𝑙,𝑙+1)

)− = 𝑎𝑖
𝑙𝜔𝑖𝑗

(𝑙,𝑙+1)
in eq 4, and 

the parameters 𝛼 𝑎𝑛𝑑 𝛽 are chosen so that 𝛼 −
𝛽 = 1 𝑎𝑛𝑑 𝛽 ≥ 0. Other stabilizing terms can be 
used to avoid divisions by zero. 

Human gait differs from person to person, and 
even within a single individual, therefore models 
must be reliable and tolerant of changing input 
data. When employed for the LRPs analysis, the 
interpretation of relevant input data points must be 
resistant to noise and volatility in the input data 
stream. The sounds in the input data stream are 
effectively reduced by the normalising approach. 

The normalising method efficiently reduces the 
noises in the incoming data stream. By 
progressively reducing the greatest relevance 
scores provided by the best LRPs technique  
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selected using the aforementioned method, this 
process is completed in order to assess the 
significance of DCNN model design. Next, the model 
performance is tested by re-predicting on the test 
data for each model. The models most suited to 
taking use of LRPs are those whose performance 
significantly declines after just a few perturbation 
steps. This is because the performance drop makes 
it possible to claim that the few regions that were 
deleted were essential for correct classification 
performance, and as a result, it is an indication of 
significant connections between the input patterns 
and learned classes. 
 
3.3. Hybrid Classification model 

Using efficient operations and reliable 
predictions of PD data using hybrid CNNs with 
LSTMs, the suggested models can be helpful for 
identifying changes in postural balance and grading 
PD severities since they are robust to noises and 
classify big datasets efficiently. 
 
3.3.1. LSTM 

Long-term data storages and access are made 
possible by replacements of typical nodes in hidden 
layers with memory cells in LSTM. LSTM networks 
are extensively used in time series predictions for 
applications including  machine translations, air 
pollution/weather forecasts and speech 
recognitions (Zheng et al., 2020). Fig. 3 depicts 
memory cells and blocks that make up LSTM's 
hidden layers. There are three gate elements 
namely input, forget and output gates. The 
multiplicative gate units are used to prevent the 
detrimental consequences caused by unrelated 
inputs. 

 
Fig. 3. LSTM block diagram with gating 

mechanism. 
 

The amount of data to be preserved or forgotten 
by the memory cell is determined by the forget 
gate. The forget gate's activation function is 
calculated as shown below. 
𝑓𝑡 = 𝜎(𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑥𝑓𝑥𝑡 + 𝑏𝑓)                             (7) 

 
where b is the bias vector, ℎ𝑡−1 is the previous 

block output, 𝑥𝑡 is the input sequence; 𝑊ℎ𝑓and 𝑊𝑥𝑓  

represent the weight matrices for the output vector 
of precedent cell and input vector of current cell, 
respectively, in the forget gate. 𝜎 is the sigmoid 
function given by 
𝜎(𝑥) = (1 + 𝑒−𝑥)−1                                                  (8) 

The input layer determines what information 
can be stored in the memory cell from the current 
input vector as follows. 
𝑖𝑡 = 𝜎(𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑥𝑖𝑥𝑡 + 𝑏𝑖)                               (9) 

The output gate layer, which decides which 
output can be passed in the current time step, is 
defined as 
𝑂𝑡 = 𝜎(𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑥𝑜𝑥𝑡 + 𝑏𝑜)                          (10) 

Integrating the forget gate and input, the 
current cell state is computed by 
𝐶𝑡 = 𝑓𝑡⨀𝐶𝑡−1 + 𝑖𝑡⨀𝐶𝑡

′     (11) 
where 𝐶𝑡 is the cell state at time step t and ⊙ is 

the Hadamard product that indicates element-wise 
multiplication of vector. 𝑓𝑡⨀𝐶𝑡−1 and 𝑖𝑡⨀𝐶𝑡

′ decide 
the information to be inherited from the precedent 
cell state and current input, respectively. Hence, 𝐶𝑡

′ 
is determined based on the tanh activation 
function. 
𝐶𝑡

′ = 𝑡𝑎𝑛ℎ(𝑊ℎ𝐶ℎ𝑡 + 𝑊𝑥𝐶𝑥𝑡 + 𝑏𝐶)                       (12) 
The hidden state is determined by multiplying 

the output gate with the current cell state. 
𝑂𝑡 = ℎ𝑡⨀tanh (𝐶𝑡)                                                 (13) 

Overfitting issues can arise in DNNs with many 
learnable parameters, especially when they are trained 
on a short dataset. Because of this, the DNN model is 
unable to categorise the new test sample. Less training 
data, noisy input data, and a high dimensional input 
space are potential causes of overfitting in deep 
learning systems. As a result, the overfitting problem in 
the DNN model is minimised using the current 
regularisation strategies. The L2 regularisation and 
dropout techniques have been applied in this 
application to alleviate the overfitting problem. 

An excessively complicated model may overfit 
more frequently, as was discussed in L2 regularisation. 
As a result, by deleting layers from the model, we may 
immediately lower its complexity and shrink the size 
of the suggested model. By reducing the number of 
neurons in the fully connected layers, complexity may 
be further diminished. Additionally, the model should 
be sufficiently complicated to strike a balance 
between underfitting and overfitting for this purpose. 
 
3.3.2. CNNs with Modified Baysein Optimization 

CNNs are the most effective DLTs and use input,  
hidden layers, and output layers. Layers are 
composed of synthetic neurons that mimic brain 
neurons. The corresponding weights of neurons  
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enable data to pass via input hidden layers to 
output layers (Chauhan, Ghanshala, & Joshi, 2018). 
These weights are regularly adjusted using 
activation functions that take sums of input weights 
as inputs. Networks repeat themselves to reduce 
mistake. A deep neural network is created by 
including more hidden layers. But unlike a 
conventional ANN, CNNs can accept full pictures as 
input, and they scale effectively (Figure 4). 

 
Figure 4. CNNs 

 
The bulk of the layers in a CNN's design are the 

input layer, the convolution layer, the rectified linear 
units (ReLU) layer, the pooling layer, and the fully 
connected layer. It is common practise to utilise an 
input image that has the following dimensions: height, 
width, and number of channels. For instance, an RGB 
image has three colour channels. Convolution layers 
are the core elements of CNNs because they contain 
convolution filters, also called as kernels. Each of these 
filters creates an activation function that responds to 
particular components like edges and colours by 
convoluting the entire image. The ReLU activation 
function is then often utilised by a ReLU layer to 
accelerate the training process. In order to avoid 
overfitting, the pooling layer gradually downsamples 
the input picture by removing unnecessary data. 
Convolution and pooling layers are followed by the 
fully linked layers. To detect huge patterns, all the 
neurons in these layers are linked to all of the 
activation mechanisms from the layer before. The 
appropriate class is determined by feature 
combination in the top layer. However, based on the 
application or data, its design may vary. Thus, 
networks may consist of 1 or 2 convolution layers or 
could also be complex network with hundreds of fully 
linked convolution layers. 
 

• Bayesian Optimizations 
Bayesian optimizations are efficient MLTs and best 

choices for an expensive objective functions. By using 
a probabilistic model, the black-box method of 
Bayesian optimization seeks to reduce or maximise 
any given objective function (Frazier, 2018). A loss 
function plus a probabilistic model make up a 
Bayesian optimization. It seeks to describe the 
distribution of the goal function f by modelling it. 

 

𝑥𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑥𝑋𝑚𝑎𝑥/𝑚𝑖𝑛𝑓(𝑥)                                  (14) 
where X represents any particular design space 

of interest. This sequentially updated model is 
employed for generating effective sampling 
selections. It also uses an acquisition function to 
keep up capabilities for both exploration and 
exploitation. The next selection is made using the 
relevant candidates chosen by the acquisition 
function. Many times, a Gaussian process is chosen 
to get some of the objective function's necessary 
parameters. The loss function illustrates the 
running sequence's efficiency. 

In BO, a Bayesian prior distribution that assesses 
policy performance encodes the objective 
function's uncertainty. Since the approach is 
Bayesian, the estimated values' explicit encoding of 
uncertainty. A posterior distribution across the 
objective is generated following policy executions, 
and this posterior is utilised to direct the 
exploration procedure. The generalisation 
performance of Gaussian process models, and as a 
result, the performance of the BO technique, are 
significantly influenced by the definition of both the 
GP mean function and the kernel function storing 
relatedness between points in the function space. 
 
3.3.3. Gaussian Distribution process 

The effectiveness of BO as a Bayesian approach 
greatly depends on the calibre of the modelling 
effort. The nature of the posterior and, thus, the 
generalisation capabilities of the surrogate 
representation are determined by the prior 
distribution's specification. We decide to use the 
Gaussian process to model the objective function 
𝜂(𝜃)~𝐺𝑃(𝑚(𝜃), 𝑘(𝜃, 𝜃′))                                     (15) 

A mean function 𝑚(𝜃) and a covariance 
function 𝑘(𝜃, 𝜃′) create GP models. The anticipated 
value at a given location 𝜃 and 𝜃′ is specified by the 
mean function, 𝑚(𝜃) = 𝐸[𝜂(𝜃)] Similar to this, the 
covariance function calculates the covariance as 
𝑘(𝜃, 𝜃′) = 𝐸[𝜂(𝜃) − 𝑚(𝜃)𝜂(𝜃′) − 𝑚(𝜃′))] The 
correlation between the objective values at 
locations and'is represented by the kernel function. 
The information about the underlying class of 
functions is encoded by both of these functions. 

The posterior distribution at additional sites 
must be determined in order to determine the 
improvement function mentioned above. This 
posterior has a simple form in the GP model. The 
conditional posterior distribution is Gaussian with 
mean given the data D1:n., 
𝜇(𝜂(𝜃𝑛+1)|𝐷1:𝑛) = 𝑚(𝜃𝑛+1) −
𝑘(𝜃𝑛+1, 𝜃)𝐾(𝜃, 𝜃)−1(𝑦 − 𝑚),                               (16) 
where m is a vector of size n with elements 
m(𝜃1),...... m(𝜃𝑛) and variance, 
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𝜎2(𝜂(𝜃𝑛+1)|𝐷1:𝑛) = 𝑘(𝜃𝑛+1, 𝜃𝑛+1) −
𝑘(𝜃𝑛+1, 𝜃)𝑡𝐾(𝜃, 𝜃)−1(𝑦 − 𝑚)                              (17) 

Define y to be the column vector of observed 
performances such that 𝑦𝑖 =  𝜂(𝜃𝑖). Define 
𝐾( 𝜃, 𝜃) to be the covariance matrix with elements 
𝐾𝑖,𝑗 = 𝑘(𝜃𝑖 , 𝜃𝑗).Define 𝑘(𝜃𝑛+1, 𝜃) to be the column 

vector of correlations such that the ith element is 
𝑘(𝜃𝑛+1, 𝜃𝑖) 𝑘(𝜃𝑛+1, 𝜃)𝑡is the transpose of this 
vector). So the proposed hybrid classification model 
efficiently identify the gait based PD. 
 
4. Results and Discussion 

Gait patterns are collections represented by 18 
columns of data, containing 16 VGRF sensor signals 
and 2 cumulative values from left and right foot 
sensors. About 13,000 examples for a single force-
sensitive resistor may be found in the PD dataset. 
during a period of 2 minutes of gait recording (FSR). 
Since there are 173 patients for whom the sensor 
data from the VGRFs are available, there are a total 
of 40,482,000 gait samples (18 x 13,000 x 173). First, 
the first 10 seconds of data and the last 20 seconds 
of data are deleted to lessen the impacts of gait 
commencement and end-up. The dataset link is 
given as https://nist.mni.mcgill.ca/multi-contrast-
pd25-atlas/. In the context of a data mining issue, the  

 
following definitions apply to the entries in the 
confusion matrix: The model identified four incorrect 
predictions: the correct negative prediction, also 
known as true negative (TN), as failed; the incorrect 
positive prediction, also known as false positive (FP), 
as passed; the incorrect negative prediction, also 
known as false negative (FN), as failed; and the 
correct positive prediction, also known as true 
positive (TP), as passed. The following formulas are 
used to determine the performance measures based 
on this confusion matrix. 

Precisions are ratios of correctly found positive 
observations to total expected positive observations. 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                                (18) 

Sensitivities or Recalls are defined as ratios of 
correctly identified positive observations to over-all 
observations. 
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                      (19) 

F – measures are  defined as weighted averages 
of Precisions and Recalls and hence takes false 
positives and false negatives. 
𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/
(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)                                            (20) 

Accuracies are computed in terms of positives 
and negatives as follows: 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝐹𝑃)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)     (21) 

 
Table 1. Comparison table between the proposed and existing methods 

Performance metrics MC-SVM CNNs 1D-Convnet LSTM HCNN-LSTM 

Accuracy 71.41 83.54 89.26 93.9 95.67 
Precision 69 76 84 91 97 

Recall 74 79 85 91 93.1 
F-measure 67 76 81 94 97.5 

 
The table 1. tabulates the performance comparison 

values between the proposed and existing methods. 
 

 
Fig. 6. Results of a precision comparison of the 

proposed and current methods for identifying data 
related to PD 

 
The accuracy comparisons between suggested and 

existing methods for categorising PD are shown in Fig. 
6. Overall, the results showed that the HCNN-LSTM 
model performed better on the provided datasets 
when compared to MLTs under consideration. These 
results are consistent with the earlier error rate and can 
be attributed to the rule sets produced by the proposed 

classification model. According to the findings, the 
suggested HCNN-LSTM strategy outperforms other 
current classification methods in terms of precision. 
 

 
Fig.7 shows the classification of data for Parkinson 
disease using the proposed and existing methods 

and the recall comparison findings 
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The memory comparison of the proposed and 

current methods for categorising the Parkinson 
disease data is shown in Fig. 7. The data utilised in 
this study primarily focuses on classifying people 
who have symptoms of Parkinson disease with a 
number of characteristics that often influence the 
diagnosis. As a result, the prediction model is 
viewed as a classification issue that arises from 
having PD  or not. As a consequence, the suggested 
supervised models were used for the assigned task, 
and the outcomes were examined and assessed. 
 

 
Fig. 8. The suggested and current methods for 

categorising the data for Parkinson disease were 
compared using the F-measure. 

 
The F-measure comparative values of suggested 

and existing methods for identifying data on PD are 
shown in Fig. 8 where it is demonstrated that the 
suggested model has the greatest accuracy rate 
measurement in each database when compared to 
other MLTs,. When compared to the other 
approaches, the utilised database yields the best f-
measure findings. It can be seen from the graph 
that the proposed HCNN-LSTM model outperforms 
the current approaches in terms of f-measure. 
 

 
Figure 9 shows accuracy comparison findings for 
the proposed and current methods of identifying 

data related to PD 
 

The accuracy comparisons between the 
suggested and existing methods for categorising PD 
are shown in Fig. 9. A supervised MLT that can 
accurately forecast the goal and generalise new  

 
instance predictions is considered successful. 
Typically, accuracy has two kinds, sensitivity and 
specificity which may be used to determine the 
validity of a model. According to the simulation 
findings, the suggested HCNN-LSTM model has a 
high accuracy rating of 95.67%, compared to the 
current LSTM model's 93.9%, the 1D-Convnet 
model's 89.26%, the CNNs model's 83.54%, and the 
MC-SVM model's 71.41%. As a consequence of the 
findings, it can be said that the suggested HCNN-
LSTM approach provides good accuracy outcomes 
when compared to existing classification 
techniques. 
 
5. Conclusion 

In this study, hybrid classification models are 
created, examined, and found to be effective at 
categorising gait impairment in PD patients. This 
study employed VGRFs gait time series datasets to 
discriminate between PD patients and healthy 
controls. The HCNN-input LSTM's layer takes in the 
pre-processed, segmented data from VGRFs. Gait 
cycle contains significant spatiotemporal features 
that can differentiate between persons with PD and 
those who are healthy. LRPs are used to interpret 
the results of the models and provide information 
about the features of the spatiotemporal gait GRF 
signals that are most crucial for the accuracy of the 
algorithmic predictions. The PD data predictions 
made by the hybrid CNNs with LSTM are accurate, 
and they operate quickly. The models outperform 
prior manual feature selection methods and show 
resilience to perturbation noise, overcoming 
individual differences in stride length. According to 
the LRPs research, body balance, which refers to 
the extent to which a patient's condition impairs 
their ability to walk without falling, is a key 
indicator for the diagnosis of Parkinson's disease 
(PD). Additionally, whether making diagnostic 
conclusions based on visual observation criteria or 
bespoke features built from data from other GRFs 
sensors, healthcare professionals may find it helpful 
to identify the most significant gait cycle events. In 
terms of future approaches, the methods put 
forward in this paper can assist in creating a plan for 
individually tracking the severity of PD as it 
progresses. 
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