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ABSTRACT Amygdalin, often known as vitamin B17, is a cyanogenic glycoside that is mostly present in almond, 
cherry, and apricot seeds. The FDA has limited its usage in the United States because of its metabolism into 
hydrogen cyanide, which offers serious health hazards, even though it has historically been used for its alleged 
anticancer properties. Amygdalin and its derivatives, such as prunasin and mandelonitrile, may have 
pharmacological qualities, such as antiinflammatory and antioxidant benefits, notwithstanding these 
reservations. The complex pathophysiology of Polycystic Ovary Syndrome (PCOS), a common endocrine disorder 
characterized by hyperandrogenism and prolonged anovulation, includes inflammation as a major component in 
addition to hormonal and metabolic dysfunctions. Common in individuals, insulin resistance is linked to elevated 
levels of inflammatory markers such TNF-α, CRP, and IL-6. The therapy of PCOS may benefit from the use of 
interleukin-10 (IL-10), an antiinflammatory cytokine. Due to insulin resistance and other metabolic abnormalities 
linked to the disorder, PCOS and type 2 diabetes are significantly correlated. This mechanism involves the 
MAPK/ERK1/2 signaling pathway in addition to the crucial function of GLUT transporters in glucose metabolism. 
The possibility of cyanide poisoning raises concerns about amygdalin's safety, even though it may have therapeutic 
advantages for oxidative stress and reproductive health. To investigate its potential advantages while maintaining 
patient safety, more study is required.  
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INTRODUCTION  
 Amygdalin sources (Vitamin B17):  
Over time, proponents of natural medicine have come 
to recognize amygdalin, commonly known as "laetrile" 
and "vitamin B17," and research has suggested that it 
may have anticancer properties [1]. In the past thirty 
years, this vitamin has generated the greatest 
controversy. This cyanogenic plant glucoside, which is a 
member of the Rosaceae family, is discovered in the pits 
of many fruits and raw nuts, including almonds, 
cherries, peaches, plums, and apricot stones. 
Additionally, plants including sorghum, clover, and lima 
beans contain it [2]. The words laevorotatory and 
mandelonitrile are the sources of the word laetrile [1,3]. 
Mandelonitrile refers to a substance's chemical identity, 
whereas laevorotary defines stereochemistry. The 
chemical formula for amygdalin is C20H10NO11, and its 
estimated molecular weight is 457.42 Dalton. In the 
past, it was used to cure leprosy, leukoderma, asthma, 
and bronchitis [1]. Apricot kernels contain a chemical 
called amygdalin, which emits cyanide. Despite its 

dubious effectiveness and FDA warnings about 
cyanogenic dangers and a lack of clinical proof, 
amygdalin has been used globally, notably in the 
treatment of cancer [4]. During the 1920s, Dr. Ernst T. 
Krebs, Sr., a German scientist, conducted research on 
apricot kernel extract that contains amygdalin. This 
compound releases cyanide, which is harmful to 
humans because of its impact on intestinal bacteria. In 
1952, his son, Krebs Jr., created 'laetrile', a substance 
structurally different from amygdalin. He later renamed 
it 'Vitamin B-17' in 1970[5]. Early studies focused on the 
potential anticancer effects of amygdalin and laetrile by 
examining the involvement of b-glucosidase in cancer 
cell activity [6]. According to Krebs Jr.'s theory, 
amygdalin releases more HCN when β-glucosidase 
levels in cancer cells are higher. Rhodanese, which 
detoxifies HCN and is present in both cancer and 
healthy cells, makes amygdalin's selective toxicity 
against cancer cells more difficult to achieve [7]. The 
theory put forth by Drs. Krebs and Krebs Jr., according 
to which glucosidase activity exclusively affects cancer 
cells, has also been proven to be incorrect because this 
enzyme has been detected in physiologically normal 
tissues, albeit in smaller quantities [8,9]. When the 
vitamin B-17 was given a new name in 1970, it 
attempted to get around the law prohibiting the use of 
pharmaceuticals. The usage of vitamins, particularly 
vitamin B-17, was prohibited [10]. In 1977, 23 states 
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were prohibited from receiving laetrile and amygdalin 
from the U.S. food and drug agency (FDA) [11].
   
Chemistry and Enzymatic metabolism of Amygdalin:  

 
Figure: 1: - Biochemical Structural Illustration Coated with laetrile and amygdalin [12]. 

  
During the stage of fruit enlargement, amygdalin 
content typically increases and either stays constant or 
slightly declines as the fruit ripens. The endocarp of a 
peach seed has a higher concentration of amygdalin 
than the mesocarp. The cyanogenic amygdalin 
diglucoside concentration in almond kernels 
determines their bitterness [13]. The first step in the 
production of amygdalin is the conversion of L-
phenylalanine to mandelonitrile, which is facilitated by 
cytochrome P450 and CYP71AN24. The enzyme UDP-
glucosyltransferase transforms mandelenitrile into 
prunasin. Amygdalin is produced via the catalytic 
conversion of prunasin by the glucosyltransferase [14]. 
When tissue is macerated or digested, plants that 
contain cyanogenic glycosides (CGs) release hydrogen 
cyanide (HCN) through β-glycosidases and 
hydroxynitrile lyases, which may be inactivated by heat. 
In plants that lack β-glycosidases, several animals and 
humans depend on gut endosymbiotes for CG 
hydrolysis [15]. The bacterial flora in the intestine that 
can manufacture β-glycosidase in the brush border of 
the small intestine is likely responsible for the decisive 
synthesis of HCN in humans [16–18].  
Amygdalin, the primary cyanogenic glycoside found in 
apricot kernels, 59 milligrams of hydrogen cyanide 
(HCN), which exists in its dissociated form as cyanide, 

are released when one gram of amygdalin is broken 
down. The fact that cyanide is extremely hazardous to 
people must be noted [19]. When orally consumed, 
amygdalin undergoes degradation by digestive enzymes 
during the salivary and gastrointestinal phases, 
resulting in the formation of prunasin as the main 
metabolite. β-glucosidase breaks down prunasin 
further to produce mandelonitrile. Amygdalase and 
prunase are examples of glucosidase enzymes that 
generate hydroxy mandelonitrile (149 Da) through 
hydroxylation across the small intestine wall. It 
eventually breaks down to produce hydrogen cyanide 
and benzaldehyde [20-22]. Despite not being hazardous 
in and of itself, amygdalin is broken down by certain 
enzymes to form the toxic chemical HCN [23]. According 
to recent studies, HCN is released in healthy cells, which 
could be harmful to the body [24]. The harmful effects 
of cyanide compounds are a result of the breakdown of 
amygdalin [25,26]. By attaching itself to a ferric ion in 
the mitochondrial cytochrome oxidase a3, cyanide 
prevents oxygen from being reduced to water, which 
inhibits cellular respiration [27]. The primary causes of 
cyanide poisoning are cellular hypoxia and disruption of 
aerobic cell metabolism, which lead to cardiovascular 
and central nervous system dysfunctions [28].  
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Pharmacological Activities of Amygdalin’s derivatives  
Table: 1 Amygdalin’s derivatives with their pharmacological action  
 

Derivative                                                     Pharmacological Action                             Reference(s) 

Derivative  
Prunasin  

Pharmacological Action  
Anti-inflammatory, Antioxidant   

[29]  
Mandelonitrile  Anticancer, Antioxidant  [30]  

Amygdalin Hydrolase  
Enzyme,  enhances  
amygdalin metabolism  

[31]  

N-Methyl-βphenylethylamine  Antidepressant, Neuroprotective  [32]  

Phenylacetonitrile  
Anticancer,  Anti- 
inflammatory  

[33]  

Mandelic Acid  Antibacterial, Antifungal  [34]   
L-Mandelonitrile  Anticancer, Antioxidant  [35]  

Hydrocyanic Acid  
Cytotoxic, used in controlled doses 
for specific treatments  

[29]  

Benzaldehyde  Anticancer, Antifungal  [34]  

Amygdalin-7-O-glucoside  
Antioxidant  and  anti- 
inflammatory effects  

[36]  

Amygdalin-2-O-acetate  Cardioprotective effects  [37]  
Amygdalin-3-O-glucoside Anti-diabetic effects [38] 
                 
 Biosynthesis of amygdalin:  
A CYP79 enzyme hydroxylates the amino acid 
phenylalanine in amygdalin to phenyl acetaldoxime, 
which a CYP71 enzyme then further hydroxylates to 
mandelonitrile. The subsequent attachment of one 
glucose molecule to the α-hydroxyl group of 
mandelonitrile is catalyzed by a uridine diphosphate 
glucose-glucosyl transferase (UGT), producing prunasin 
(d-(-)-mandelonitrile-β-d-glucoside, CAS number 99-18-

3, 295.3 g mol−1). When another glucose molecule is 
added to the 6'-hydroxyl group, it transforms into the 
di-glucoside gentiobiose, which is then converted to 
amygdalin (Figure 2). Plants produce amygdalin using 
the same basic process as CNGs, which involves 
cytochrome P450 (CYP) enzymes hydroxylating an 
amino acid to an oxime and then α-hydroxy nitrile, then 
glycosylating the latter [12].  
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Figure: 2: - Amygdalin the process of biosynthesis is shown. [12]. 

 
 Pharmacological Activities of drug in PCOS:  
The condition known as The hallmarks of polycystic 
ovarian syndrome (PCOS) are hyperandrogenism and 
prolonged anovulation brought on by abnormalities in 
cellular regulation. Since the initial report by Stein and 
Leventhal, PCOS has been a subject of controversy in 
the field of gynecological endocrinology. Our 
knowledge of the endocrine processes underlying this 
syndrome's clinical symptoms is currently lacking, 
disjointed, and frequently unclear [39,40]. PCOS has 
been observed to run in families, with an autosomal 
dominant pattern of inheritance, suggesting an 
oligogenic basis. Several key genes have been 
implicated in the development of PCOS, including 
CYP11a, which affects androgen production, and insulin 
VNTR alleles, which influence hyperinsulinemia and 
associated risks such as menstrual irregularities and 
type 2 diabetes mellitus [41]. The pathophysiology of 
PCOS involves several hypotheses. The LH hypothesis 
suggests that there is exaggerated LH pulsatility, the 
insulin hypothesis proposes that insulin resistance leads 

to hyperinsulinemia, the ovarian hypothesis suggests 
excessive ovarian androgen production, and a fourth 
theory suggests a block in ovarian-level FSH activity 
despite a normal follicle response to FSH stimulation 
[42]. The widespread endocrine condition PCOS is not 
well understood pathophysiologically. It is thought to be 
the outcome of a convoluted "vicious cycle" with 
several beginning events that cause ovarian excess 
androgen production as well as anovulation.  A main 
neuroendocrine malfunction resulting in an increased 
LH pulse frequency and amplitude; Hyperinsulinemia 
and resistance to insulin are caused by a specific 
abnormality in the action and secretion of insulin. An 
increase in adrenal production of androgenic due to a 
shift in cortisol metabolism; an increase in ovarian 
androgen production due to a failure in androgen 
synthesis [43].  
Anti-Müllerian Hormone (AMH): Research on AMH and 
PCOS has been conducted. Granulosa cells in minor 
antral and preantral follicles produce AMH. AMH levels 
may be higher in PCOS individuals, particularly in those 
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who are obese, according to research. In addition to 
luteinizing hormone (LH) and antral follicle count, AMH 
can operate as a separate risk factor for the diagnosis of 
PCOS [44].  
Glucose and Lipid Metabolism: In PCOS populations, 
glucose and lipid metabolism have a major impact on 
hormonal and associated parameters. Particularly in 
obese people, dysregulation of these metabolic 
pathways can make PCOS symptoms worse [44].  
The Impact of GnRH in PCOS: An increasing amount of 
evidence suggests that increased  
GnRH pulse frequency and intensity might promote the 
synthesis of LH rather than FSH, which would raise the 
LH/FSH ratio in PCOS-afflicted women [45]. The 
following data supports the idea that elevated LH levels 
play a critical role in the development of metabolic and 
reproductive problems. The first is that LH causes 
ovarian theca cells to produce more androgen, which 
results in hyperandrogenism and a stoppage of follicle 
growth [46]. Second, a higher frequency of LH pulses 
prevents the generation of FSH and estrogen, which 
delays ovulation and follicle development. Thirdly, the 
development of polycystic ovaries in PCOS patients is 
facilitated by LH, which increases ovarian IGF-1 release, 
which can improve LH binding and androgen synthesis 
in theca cells [47].  
The etiology of PCOS, a common gynaecological 
endocrine condition in women of reproductive age, is 
still unclear. Its development is thought to be 
significantly influenced by inflammation, though. IL-6, 
TNF-α, IL-17, CRP, NLR, and PLR are among the 
inflammatory markers that have been studied in 
connection with PCOS. TNF-α is an inflammatory 
cytokine, while IL-6 is a protein of the immune system 
linked to inflammation. IL-17 has been linked to  
PCOS, and CRP is a marker produced in response to 
inflammation. NLR indicates cardiovascular health and 
metabolic syndrome, while PLR has recently been 
associated with PCOS. It is noteworthy that the ratio of 
CRP to albumin can function as an accurate diagnostic 
for PCOS. Additionally, mean platelet volume (MPV) and 
PLR are also relevant indicators in this context [48-50].  
 
Inflammatory markers related to PCOS:  
Interleukins and their subtypes:  
IL-6 (Interleukin-6):  
Adipocytes from the body's fat reserves produce a 
multitude of cytokines, Interleukin 6, also known as IL-
6, is among them [51]. PCOS is associated with higher 
IL-6 levels and are regulated by NF-κB. It is also 
associated with various diseases such as rheumatoid 
arthritis, cardiovascular conditions, asthma, and colon 
cancer, highlighting its dual pro- and antiinflammatory 
roles [52]. In its normal function, IL-6 supports epithelial 
renewal and immune function. However, in PCOS, 
insulin resistance may lead to increased IL-6 levels, 
indicating potential alterations in immunity and an 

increased risk of cardiovascular issues in young women 
[53]. Nevertheless, persistent inflammation caused by 
disorders like PCOS can pose significant dangers.  
IL-8 (Interleukin-8):  
IL-8, a cytokine that promotes inflammation, functions 
specifically as an activator and chemoattractant for 
neutrophils [54]. The role of IL-8 in regulating the ovary 
shows promise. It plays a part in the maturation of 
oocytes, ovulation, and follicular development [55]. 
According to earlier studies, the ovary's granulosa cells, 
stromal cells, and theca cells all contain IL-8 mRNA 
[56,57]. Goto et al. [58] have demonstrated that IL-8, as 
a signaling molecule, is involved in follicular 
development through vascularization. Research has 
documented the existence of IL-18 within the follicular 
fluid of patients undergoing in vitro fertilization (IVF) 
and females with regular menstrual cycles [59]. Ascites, 
blood, tumour tissue, and fluids from ovarian cysts in 
individuals with ovarian cancer have all been found to 
have elevated IL-8 levels [60,61]. Proliferation, 
adhesion, invasion, and angiogenesis are all improved 
by increased IL-8 expression [62]. Ovarian endometrium 
has increased IL-8 expression [63]. Serum IL-8 levels 
were linked to neo angiogenesis, metastasis, and 
melanoma, according to Nicolae et al. [64]. According to 
recent research, PCOS is associated with elevated IL-8 
levels [65]. IL-8 was shown to be high in PCOS women 
in a clinical trial conducted by Ali et al. [66,67], but it 
reduced after receiving pioglitazone and metformin.  
 
IL-10 (Interleukin-10):  
The cytokine interleukin-10 (IL-10), which suppresses 
the immune system and reduces inflammation, is 
essential to our body's defensive systems [68]. It 
suppresses the activity of TH1 cells and was first 
discovered to be a component of TH2 cells [69]. It is 
thought to support the maintenance of pregnancy by 
reducing TH1 cell activity, which promotes 
progesterone production and corpus luteum 
maturation [70]. A low concentration of IL-10 has been 
associated with metabolic syndrome and obesity [71]. 
PCOS patients have shown a reduction in plasma IL-10 
levels [72]. According to Sylus et al. [73], clomiphene 
citrate up-regulates IL10, causing PCOS women to 
ovulate and become pregnant at higher rates. 
Predicting the relationship between IL-10 and PCOS is 
difficult because the majority of research on the subject 
has been population-based [72,74] and has a limited 
sample size. The role of IL-10 in the pathophysiology of 
PCOS requires more investigation.  
 
IL-17 (Interleukin-17):  
Recent research has found a connection between PCOS 
and IL-17, IL-17a, and IL-1Ra [75– 77]. Inflammatory and 
autoimmune disorders are primarily affected by IL-17a 
[76]. Higher levels of IL-1Ra in PCOS affect glucose 
metabolism and lessen insulin resistance. Increases in 
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inflammatory cytokines (IL-17a, IL-1a, IL-1b, IL-2, and IL-
8) can impair ovarian activity, while high levels of AMH 
are associated with heightened inflammation and 
metabolic and reproductive dysfunctions [77].  
 
TNF-α (Tumor Necrosis Factor-alpha):  
Adipose tissue secretes TNF-α, IL-6, and adiponectin, 
with their levels being altered in cases of obesity. 
Changes in adipokine profiles can lead to a slightly 
proinflammatory condition that impacts both adipose 
tissue and other specific tissues [78,79]. TNF-α acts as a 
proinflammatory cytokine, By preventing the activity of 
tyrosine kinase of the receptor for insulin in fat and 
muscle cells, it contributes to the development of 
systemic resistance to insulin (IR), which is linked to 
obesity. On the other hand, adiponectin functions as an 
insulin sensitizer and possesses anti-inflammatory 
properties [80-82]. The pathophysiology of PCOS is 
associated with TNF-α due to its role in increasing 
insulin resistance (IR), causing hyperandrogenism (HA), 
and influencing follicular formation. It is thought that 
increased TNF-α expression in muscle tissue and 
Adipose tissue contributes to the development of IR in 
people by decreasing the activity of the tyrosine kinase 
of the insulin receptor [83,84]. Furthermore, TNF-α has 
been implicated in chronic inflammatory disorders such 
as ulcerative colitis, rheumatoid arthritis, and Crohn's 
disease [85-87]. Research has indicated that 
adiponectin expression may be reduced by TNF-α and 
IL-6. However, it is worth noting that TNF-α may also 
have the ability to increase adiponectin expression. In 
animal models, NF-κB, which is a pathway effector of 
TNF-α, has been linked to insulin resistance and 
metabolic disturbances associated with obesity [81]. In 
the case of PCOS, even in the absence of obesity, there 
is evidence of a proinflammatory environment that 
could be influenced by hyperandrogenism. This 
environment may contribute to the increased 
production of TNF-α by macrophages [88]. Females 
with PCOS have a greater amount of CRP (C-reactive 
protein) than people of the same age and BMI, which 
may indicate that PCOS has an underlying inflammatory 
mechanism [89,90]. The secretion of free fatty acid into 
the circulation by visceral adipocytes in non-obese 
women with PCOS has been found to assist modestly 
enhance inflammation in these individuals [81].  
 
CRP (C-reactive protein):  
The underlying cause of long-term cardiovascular 
hazards in PCOS may be persistent lowgrade 
inflammation. Obesity and insulin resistance contribute 
to dysfunction of endothelial cells, stiffness of the 
arteries, early ventricular alterations, and the onset of 
atherosclerosis, which may be brought on by oxidative 
stress, dyslipoproteinemia, hypertension, and disturbed 
homeostasis [91–93]. An raised white blood cell count, 
inflammatory cytokines including interleukin-6 and 

interleukin-18, and high levels of C-reactive protein 
(CRP) all point to a persistent state of low-grade 
inflammation that is characteristic of PCOS [93,94]. 
Research has indicated that C-reactive protein (CRP) is a 
very accurate predictor of cardiovascular morbidity and 
a dependable measure of inflammation [95,90,93], 
Specifically regarding lipid profile parameters [94]. 
Kalyan and colleagues discovered that the CRP/albumin 
ratio is a more accurate marker of inflammation in PCOS 
compared to free androgens or insulin resistance, 
demonstrating increased specificity regardless of BMI 
[96]. In PCOS, inflammation seems to play a significant 
role regardless of BMI, affected by CRP gene variations, 
which could be essential in confirming CRP as a reliable 
predictor of cardiovascular disease [97]. Theoretically, 
CRP might identify PCOS individuals who are more likely 
to develop heart disease and type II diabetes [93]. Just 
two published research articles have examined CRP 
level in PCOS patients and shown that they were more 
likely than controls to have increased CRP levels. These 
studies' authors came to the conclusion that women 
with PCOS had noticeably increased CRP levels [90,98]. 
They looked analysed levels of CRP in a larger cohort of 
PCOS patients who were matched with controls based 
on BMI in order to either support or refute this link.  
 
NLR (Neutrophil-to-lymphocyte ratio):  
NLR, a marker of inflammation, was utilized in PCOS [99-
101]. In PCOS, NLR levels showed an increase even with 
comparable CRP values [100,101]. Inflammatory 
haematological indicators such as leucocytes, NLR, and 
PLR have been connected to the prediction of death 
from cancer, cardiovascular disorders, and 
cerebrovascular accidents [102-107]. NLR serves as an 
indicator of systemic inflammation [105].   
 
PLR (Platelet-to-lymphocyte ratio):  
PLR serves as a biological marker indicating thrombosis-
inflammation balance. It correlates with increased 
megakaryocytic proliferation, thrombocytosis, and high 
platelet counts, alongside low lymphocyte counts, 
highlighting inflammation and clotting risks [106]. 
Activation of platelets and function are correlated with 
platelet size. Prior research has shown that MPV is a risk 
factor for cardiovascular illnesses and is a significant 
predictor of platelet activation [107]. The use of NLR, 
PLR, and MPV (mean platelet volume) as indicators of 
chronic inflammation is growing in the literature [105–
107]. NLR [99–101] and MPV in PCOS [108–111] have 
been reported. PLR in PCOS hasn't been reported 
before, though. As far as we are aware, this article is the 
first to use NLR, PLR, and MPV in combination for PCOS. 
Furthermore, no research has looked at the relationship 
between inflammatory markers and PCOS IVF 
outcomes.  
 
MAPK/ERK1/2:  
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The EMT process is regulated by the MAPK pathway, 
which is made up of many kinases like as p38, ERK1/2, 
and JNK [112]. The levels of JNK and p-JNK proteins, as 
well as the pJNK:JNK ratio, did not significantly differ 
across the patient groups. According to Western blot 
analysis, patients with PCOSEH and nPCOSEH showed 
higher p38 MAPK (MAPK) levels yet did not have p-p38 
MAPK levels or p-p38:p38 ratios. Additionally, p-ERK1/2 
and the p-ERK1/2:ERK1/2 ratio were greater in PCOS 
patients than in nPCOS patients, whereas p-ERK1/2 
protein expression was also higher in nPCOSEH patients 
[113]. It has been demonstrated that IRS activation is 
suppressed by MAPK pathway activation, which 
encourages the formation of IR [114]. In the case of 
PCOS, MAPK signaling is a crucial signal transduction 
route connected to androgen production and IR [115]. 
Furthermore, decreased GLUT4 expression brought on 
by MAPK activation may hinder glucose transport [116]. 
Additionally, there is proof that PI3K/AKT signaling can 
affect the activation of the MAPK pathway [117]. We 

measured MAPK-related protein expression to 
determine if berberine's effects on IR were connected 
to MAPK pathway activation. In PCOS model mice, we 
found a substantial berberine-mediated inhibition of 
p38, ERK, and JNK. This implies that berberine may 
modulate the MAPK signaling pathway to attenuate IR 
in part. In conclusion, our study offers new proof that 
berberine therapy can reduce IR in a rat model system, 
hence mitigating the pathophysiology of PCOS through 
a mechanism most likely associated with GLUT4 
overexpression. The molecular processes that underlie 
this increase are probably connected to the inhibition of 
MAPK signaling and the stimulation of PI3K/AKT 
signaling by berberine. Thus, our findings imply that 
berberine could have therapeutic uses. Crosstalk 
between MAPK signaling and PI3K-AKT is amply 
supported by prior research [118]. Our findings support 
the presence of this type of crosstalk and imply that it 
might be a major mediator of IR linked to PCOS.  

 
GLUT And their Types:  
Table: 2 GLUT Pathway and their role in PCOD and Diabetes:  
GLUT  PATHWAY/  ROLE IN PCOD  ROLE  IN REFERENCES  
TYPE  DIABETES  
FUNCTION  

GLUT1  Facilitates glucose  
uptake  in  
most tissues  

Elevated expression in ovarian 
tissues; linked to insulin 
resistance  

Impaired  
expression  
contributes to glucose 
uptake  
issues  

[119]  

GLUT2  Highcapacity 
glucose transporter 
in  
liver, pancreas, 
kidneys  

Implicated in glucose sensing 
and insulin release 
abnormalities  

Dysfunction leads to 
hyperglycemia and 
reduced insulin 
secretion  

[120]  

GLUT3  Major transporter 
in neurons, 
placenta  

May affect metabolic pathways 
influencing  
ovulation  

Essential for glucose 
uptake in brain; 
dysfunction can impact 
cognition and  
metabolism  

[121]  

GLUT4  Insulinregulated 
glucose transporter 
in muscle 
 and 
adipose tissue  

Insulin  resistance common in 
PCOD may lead to reduced 
GLUT4 activity  

Deficiency  linked 
to insulin resistance and 
 Type  2  
Diabetes  

[122]  

GLUT5  Fructose 
transporter  

Potential  link  to 
metabolic syndrome in  
PCOD  

May  influence 
energy metabolism  
in diabetes  

[123]  
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JAK-STAT and JKT:  
Table: 3 JAK-STAT and JKT (Janus Kinase Tyrosine) signaling Pathway and their role in PCOD and Diabetes:  
PATHW ROLE IN PCOS  ROLE IN DIABETES  REFEREN 
AY  CES  

 
JAK- 
STAT  

Inflammation, insulin resistanc e  Insulin signaling, betacell function  [124]  

JKT  Insulin resistance, metabolic d 
ysfunction  

Glucose metabolism, insulin s 
ensitivity  

[125]  

NOS And Their Types:  
 
Table: 4 The roles of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) in PCOS and 
diabetes.  
TYP ROLE IN PCOS  ROLE IN DIABETES  REFEREN 
E  CES  

iNO 
S  

Inflammation, insulin resistance  Insulin resistance, impaired insuli n 
signaling  

[126]  

eNO 
S  

Hormonal regulation, endotheli al 
function  

Vascular homeostasis, atheroprote ction  [127]  

  
TLRs Receptors and their roles in PCOD and Diabetes:  
The innate immune system depends heavily on a family of proteins called toll-like receptors (TLRs). Immune responses 
are triggered by their recognition of pathogen-associated molecular patterns (PAMPs) [128].  
 
Table: 5 TLRs Receptors and their types, their roles in PCOD and Diabetes:  
TLR TY ROLE IN PCOS  ROLE IN DIABETES  REFEREN 
PE  CE  

TLR2  Inflammation, insulin resista nce  Insulin resistance, vascular comp 
lications  

[129]  

TLR4  Inflammation, hormonal imb alance  Insulin resistance, atherosclerosi s  [129]  

TLR9  Inflammation, metabolic dys function  Insulin resistance, diabetic nephr opathy  130]  

  
PCOS And Diabetes:  
PCOS is a hormonal disorder marked by elevated levels 
of androgen hormones, which contribute to the 
development of male characteristics. Typical indications 
encompass the growth of facial hair, irregularity in 
menstrual cycles, acne, the presence of ovarian cysts, 
and difficulties with fertility [131].  
 
Diabetes and Insulin resistance and their relation:  
In women with polycystic ovarian syndrome (PCOS), the 
link between insulin resistance and hyperandrogenism 
is well-established [132]. Nevertheless, previous 
findings [133] indicating an insulin-antagonistic impact 
of androgens have been overshadowed by more recent 
research showing that antiandrogen therapy with 
flutamide [134] or GnRH agonists [135,136] does not 
modify insulin resistance in PCOS. Conflicting outcomes 
have been documented in non-PCOS females, with 

certain studies [132,137-140] proposing a link between 
testosterone and insulin resistance, while others 
[141,142] show no association. Despite this, androgens 
can impact body composition, which is linked to insulin 
sensitivity. Therefore, it is plausible that testosterone 
may indirectly affect insulin sensitivity through its 
influence on body composition. We present the findings 
of hormonal, metabolic, and body composition 
investigations conducted before, as well as 1 month and 
9 months after, the removal of a Leydig cell tumor in a 
postmenopausal woman [143]. The correlation 
between PCOS and diabetes is significant, although 
PCOS itself does not directly cause diabetes. Resistance 
to insulin, a major contributing factor to the 
development of diabetes type 2, affects both illnesses 
[144]. PCOS is also linked to resistance to insulin, a 
condition in which the body fails to use insulin, the 
hormone that controls blood sugar levels, efficiently. 
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This illness makes type 2 diabetes more likely to occur 
[145]. A majority of individuals with PCOS experience 
some level of insulin resistance, although the exact 
percentage is unknown. Estimates suggest that 
approximately 65% to 70% of people with PCOS are 
insulin-resistant [146]. Insulin resistance and 
hyperinsulinemia are prevalent in 70% to 80% of 
individuals with PCOS who have a BMI over 30. 
However, even those with a lower BMI can be affected. 
The risk of insulin resistance is more strongly correlated 
with abdominal fat, indicated by a hip-to-waist ratio of 
0.85 or higher, rather than BMI alone [147]. While PCOS 
may not directly cause diabetes, a study conducted in 
2021 discovered that individuals with PCOS have a 
higher incidence of diabetes. However, this association 
may be attributed to shared risk factors rather than a 
direct cause and effect relationship [148]. Whether or 
not PCOS causes diabetes, it is important to remember 
that people with PCOS are more likely to get type 2 
diabetes. A 2017 study found that body fat levels are 
linked to this increased risk of diabetes type 2, and that 
slim PCOS patients are not at a greater risk of 
developing type 2 diabetes [149]. An autoimmune 
response that stops insulin synthesis is known as type 1 
diabetes [150]. Individuals with type 1 diabetes are at 
an increased risk of developing PCOS [151]. A 
comprehensive analysis and meta-analyses from 2016 
recommend that individuals with ovaries and type 1 
diabetes undergo screening for PCOS due to the 
heightened risk of developing PCOS and its associated 
traits [152].  
  
Amygdalin and its Antioxidant effect:    
Lipid production, protein folding, and calcium ion 
storage are only a few of the cellular functions in which 
the endoplasmic reticulum (ER) is essential [153]. 
Numerous illnesses, including overweight and obesity, 
atherosclerosis, diabetes type 2, hepatic cirrhosis, and 
renal damage, are strongly associated with ER stress 
[154]. Studies have demonstrated that disruptions in 
the ER homeostasis pathway lead to a decrease in very 
low-density lipoprotein levels, a rise in lipoprotein B100 
breakdown and changes to transcription factors linked 
to lipids [155]. Transcriptional factors and enzymes 
involved in lipogenesis are overexpressed when ER 
stress is induced [156]. This can result in inflammation 
and apoptosis in the hepatic tissue [157]. Recently, The 
interaction of two cellular stressors, oxidative stress and 
ER stress, has drawn interest in the study of the 
pathophysiology of several illnesses [158,159]. 
Oxidative stress occurs when the body produces too 
many reactive oxygen species (ROS), which are products 
of oxygen molecules [160]. ROS can be generated by 
environmental factors or mitochondrial dysfunction 

[161]. Oxidative stress causes apoptotic cascades, 
releases inflammatory chemicals, and contributes to 
the development of a number of illnesses, including 
diabetes, non-alcoholic fatty liver disease, and kidney 
damage. According to a number of studies, the 
production of ROS within the ER is facilitated by 
unfolded proteins and abnormalities in the glutathione 
(GSH)/GSSH ratio during endoplasmic reticulum (ER) 
stress [162,163]. According to a research by Kim et al. 
[164], mice's livers showed reduced GSH levels and 
enhanced lipid peroxidation as a result of tunicamycin 
(TM)-induced ER stress. The overexpression of ER stress 
indicators, on the other hand, is linked to the 
enhancement of oxidative stress.  
 
The ER stress cascade is triggered by oxidative stress, 
which also increases the production of C/EBP 
homologous protein (CHOP), activating transcription 
factor 4 (ATF4), and activating transcription factor 6 
(ATF6) [165,166]. Ali et al [167] demonstrated that 
supplementation with GSH can effectively alleviate ER 
stress chaperones. In a separate investigation, 
selenium, known for its antioxidant properties, was 
found to downregulate the gene expressions of GRP78, 
ATF6, and ATF4. The levels of glutathione peroxidase 
(GSH-Px), catalase (CAT), and superoxide dismutase 
(SOD) were also shown to increase [168]. The cyanide-
containing chemical amygdalin is often found in the 
seeds of apricots, peaches, bitter almonds, and other 
rosaceous plants. Because of its ability to block 
angiogenesis, cure conditions including emphysema, 
bronchitis, asthma, renal fibrosis, diabetes, and pain, 
amygdalin has been used historically [169-173]. 
 
Moreover, a number of investigations have 
demonstrated amygdalin's anti-inflammatory and 
anticancer properties in a range of cell lines and tissues 
[174–176]. During the first stage of this study, it was 
shown that amygdalin decreased the lipid profile, ALT, 
and AST levels in mice's livers during TM-induced ER 
stress [177]. Amygdalin decreased myeloperoxidase 
(MPO) and malondialdehyde (MDA) levels after D-
galactosamine liver damage, according to a recent 
research by Tang et al. [178]. The purpose of this study 
was to assess the effects of amygdalin on oxidant and 
antioxidant markers in TM-induced ER stress and its 
relationship to ER stress and oxidative stress, since 
previous research has not examined the antioxidant 
qualities of amygdalin in the liver caused by ER stress 
and its association with oxidative stress. ER stress is 
linked to various conditions, such as diabetes. The 
antioxidant effects of amygdalin could potentially 
alleviate damage associated with ER stress [179].  
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Table: 6 The application, model, dosage, key findings in tabular form:  
APPLICATION MODEL/SUBJECT DOSAGE/FORM KEY FINDINGS REFERENCE 

ANTI-
INFLAMMATORY 

Various cell lines Various reduces pro-inflammatory 
markers and cytokines to 
demonstrate antiinflammatory 
actions. 

[180]. 

ANTICANCER Cancer cell lines Various Induces apoptosis and inhibits 
proliferation in various cancer cell 
lines. 

[183]. 

ANTIOXIDANT Mice Liver Pre-treatment, 
Moderate 

Reduces MDA, increases SOD, 
CAT, GSH levels, and reduces 
oxidative stress. 

[180]. 

DIABETES 
MANAGEMENT 

Animal models Various Improves glucose tolerance and 
reduces blood glucose levels. 

[182]. 

PAIN RELIEF Various models Oral, 
Intramuscular 

Provides pain relief by 
modulating the central and 
peripheral nervous system. 

[181]. 

ASTHMA AND 
BRONCHITIS 
TREATMENT 

Animal models Oral Reduces inflammation and 
improves respiratory function in 
models of asthma and bronchitis. 

[183]. 

HEPATIC 
PROTECTION 

Mice Liver Pre-treatment, 
Moderate 

Reduces liver damage markers 
(ALT, AST), improves antioxidant 
status, and reduces lipid 
peroxidation. 

[180]. 

RENAL FIBROSIS Animal models Various Alleviates renal fibrosis by 
modulating oxidative stress and 
inflammation. 

[182]. 

FEMALE 
REPRODUCTIVE 
HEALTH 

Animal models Various Modulates oxidative balance in 
reproductive tissues, influences 
steroidogenesis, and supports 
reproductive health. 

[181]. 

CARDIOPROTECTIVE 
EFFECTS 

Animal models Various Reduces cardiac oxidative stress 
and improves cardiac function. 

[183]. 

 
Cell lines and Targeting: -Amygdalin and their effects 
especially in PCOS and Diabetes:  In India, the stem and 
leaves possess medicinal properties for the treatment 
of menstrual disorders and dysmenorrhea. The plant 
component contains a phytoconstituent that binds to 
estrogen receptors and effectively inhibits cell 
proliferation [184]. Polycystic ovarian disease, an 
endocrine disorder that causes menstrual irregularities 
due to hormonal imbalance affecting LH, FSH, estrogen, 
and testosterone levels, is significantly influenced by 
insulin resistance  
[185]. The plant Scoparia dulcis, commonly referred to 
as sweet broom weed, belongs to the  
Scrophulariaceae family of plants. It can be found in 
tropical and subtropical regions of India, Myanmar, 
America, and the West Indies [184,185]. This plant has 
been traditionally used for various medical purposes, 
such as managing diabetes, skin issues, kidney stones, 
menstrual disorders, anti-sickling, anti-cancer, and 
many other ailments [186]. S. dulcis demonstrates 
hypoglycaemic properties, improving the body's 
reaction to insulin and maybe helping to treat insulin 
resistance-related disorders, such as PCOD and ovarian 

tumors [187,188]. The aim of this study is to examine 
the possible anticancer properties of metformin, with a 
particular emphasis on its use in ovarian cancer (SKOV3 
cell line), as well as the identification of plantderived 
compounds for further studies on inhibiting cell 
proliferation, which could be beneficial for PCOD 
treatment [189]. The chemical composition aided in the 
successful extraction and identification of Scoparia 
dulcis, as confirmed through analysis of the ethyl 
acetate extract. The extract's flavonoids and phenolic 
components were partly responsible for the 
suppression of SKOV3 ovarian cancer cells. The 
structural information on these compounds was 
acquired using HR-LCMS technique [190].  
 
Safety and Side effects:   
Cyanide Poisoning: Amygdalin is converted into cyanide 
within the body, and excessive consumption of 
amygdalin can result in cyanide poisoning. The 
following are symptoms of cyanide toxicity: vomiting, 
headaches, nausea light-headedness, fever, confusion, 
decreased blood oxygen levels that cause bluish 
discolouration of the lips and skin, Coma, death, nerve 
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damage, liver damage, and extremely low blood 
pressure [191,192].   
Chronic Consumption: Neuropathy symptoms, such as 
blurred vision, hearing loss, unsteadiness, and 
malfunctioning sensory or motor nerves, can be 
brought on by a long-term diet high in cyanogenic 
glycosides (such as amygdalin)1 [191].  
  
Conclusion:   
The relationship between insulin resistance and 
inflammation is significant when PCOS, a condition 
characterized by hormonal and metabolic irregularities, 
is present. Antiinflammatory cytokines like interleukin-
10 (IL-10) show potential in treatment options, however 
research indicates that PCOS patients often have high 
levels of inflammatory markers such TNF-α, CRP, and IL-
6. These two disorders are correlated, which highlights 
the metabolic challenges faced by PCOS patients, which 
is related by processes involving the GLUT transporters 
and the MAPK/ERK1/2 signaling system. Vitamin B17, 
another name for amygdalin, is a substance that has 
both serious health hazards and some therapeutic 
advantages. It has been connected to anticancer effects 
and is present in seeds. Its conversion into hydrogen 
cyanide, however, raises questions about safety. The 
danger of cyanide poisoning cannot be disregarded, 
even considering amygdalin's possible anti-
inflammatory and antioxidant properties. Therefore, 
further study is necessary to completely understand the 
compound's safety and efficacy, even if it may offer 
some therapeutic advantages in treating oxidative 
stress and reproductive health concerns. This data 
bolsters the idea that, in order to protect patient safety, 
any investigation into the advantages of amygdalin must 
be conducted under strict scientific examination.  
  
Future prospective:  
The study focuses on optimizing the dosage and safety 
of amygdalin, investigating its antioxidant, anti-
inflammatory, and insulin-sensitizing effects, and 
designing rigorous clinical trials to evaluate its efficacy 
in treating PCOS and diabetes. It also explores the 
potential of combining amygdalin with other 
therapeutic agents to enhance its efficacy and safety 
profile. Personalized medicine is also explored, focusing 
on genetic and metabolic factors in individual responses 
to amygdalin treatment. Alternative derivatives of 
amygdalin, such as prunasin and mandelonitrile, are 
being researched to identify compounds with similar 
therapeutic benefits but lower toxicity. Public 
awareness and education are also being promoted, 
emphasizing the importance of controlled dosages and 
monitoring. Combining amygdalin with Novel Drug 
Delivery Systems (NDDS) could offer a new approach to 
managing Polycystic Ovary Syndrome (PCOS), targeting 
specific pathways while minimizing toxicity risks. 
Regulatory approvals are being established to ensure 

compliance with safety standards for the safe use of 
amygdalin and its derivatives.  
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